
Lecture 11	 All-Pairs Shortest Paths Spring 2015

Lecture 11: All-Pairs Shortest Paths

Introduction

Different types of algorithms can be used to solve the all-pairs shortest paths problem:

•	 Dynamic programming

•	 Matrix multiplication

•	 Floyd-Warshall algorithm

•	 Johnson’s algorithm

•	 Difference constraints

Single-source shortest paths

•	 given directed graph G = (V,E), vertex s ∈ V and edge weights w : E → R

•	 find δ(s, v), equal to the shortest-path weight s− > v, ∀v ∈ V (or −∞ if negative
weight cycle along the way, or ∞ if no path)

Situtation Algorithm Time
unweighted (w = 1)

non-negative edge weights
general

acyclic graph (DAG)

BFS
Dijkstra

Bellman-Ford
Topological sort + one pass of B-F

O(V + E)
O(E + V lg V)

O(V E)
O(V + E)

All of the above results are the best known. We achieve a O(E + V lg V) bound
on Dijkstra’s algorithm using Fibonacci heaps.

All-pairs shortest paths

•	 given edge-weighted graph, G = (V, E, w)

•	 find δ(u, v) for all u, v ∈ V

1

6.046J

Lecture 11	 All-Pairs Shortest Paths Spring 2015

A simple way of solving All-Pairs Shortest Paths (APSP) problems is by running
a single-source shortest path algorithm from each of the V vertices in the graph.

Situtation Algorithm Time E = Θ(V 2)
unweighted (w = 1)

non-negative edge weights
general
general

|V |× BFS
|V |× Dijkstra

|V |× Bellman-Ford
Johnson’s

O(V E)
O(V E + V 2 lg V)

O(V 2E)
O(V E + V 2 lg V)

O(V 3)
O(V 3)
O(V 4)
O(V 3)

These results (apart from the third) are also best known — don’t know how to
beat |V |× Dijkstra

Algorithms to solve APSP

Note that for all the algorithms described below, we assume that w(u, v) = ∞ if
(u, v) ∈ E.

Dynamic Programming, attempt 1
(m)

1.	 Sub-problems: duv = weight of shortest path u → v using ≤ m edges

2.	 Guessing: What’s the last edge (x, v)?

3.	 Recurrence:
d(m) = min(d(m−1) + w(x, v) for x ∈ V)uv ux

d(0) uv =
0

∞

if u = v

otherwise

4.	 Topological ordering: for m = 0, 1, 2, . . . , n− 1: for u and v in V :

5.	 Original problem:

If graph contains no negative-weight cycles (by Bellman-Ford analysis), then
(n−1) (n)

shortest path is simple ⇒ δ(u, v) = duv = duv = · · ·

Time complexity

In this Dynamic Program, we have O(V 3) total sub-problems.
Each sub-problem takes O(V) time to solve, since we need to consider V possible

choices. This gives a total runtime complexity of O(V 4).
Note that this is no better than |V |× Bellman-Ford

2

6.046J

Lecture 11 All-Pairs Shortest Paths Spring 2015

Bottom-up via relaxation steps

1 for m = 1 to n by 1
2 for u in V
3 for v in V
4 for x in V
5 if duv > dux + dxv

6 duv = dux + dxv

In the above pseudocode, we omit superscripts because more relaxation can never
hurt.

(m) Lm/21 Lm/21
Note that we can change our relaxation step to duv = min(dux +dxv for x ∈ V).

This change would produce an overall running time of O(n3 lg n) time. (student sug­
gestion)

Matrix multiplication

Recall the task of standard matrix multiplication, nGiven n× n matrices A and B, compute C = A · B, such that cij = k=1 aik · bkj .

• O(n3) using standard algorithm

• O(n2.807) using Strassen’s algorithm

• O(n2.376) using Coppersmith-Winograd algorithm

• O(n2.3728) using Vassilevska Williams algorithm

Connection to shortest paths

• Define ⊕ = min and 8 = +

• Then, C = A8 B produces cij = mink(aik + bkj)

• Define D(m) = (d
(m)

), W = (w(i, j)), V = {1, 2, . . . , n}ij

With the above definitions, we see that D(m) can be expressed as D(m−1) 8 W .
In other words, D(m) can be expressed as the circle-multiplication of W with itself m
times.

3

6.046J

Lecture 11	 All-Pairs Shortest Paths Spring 2015

Matrix multiplication algorithm

•	 n− 2 multiplications ⇒ O(n4) time (stil no better)

((W 2)2)2··· W 2lg n
W n−1•	 Repeated squaring: = = = (δ(i, j)) if no negative-

weight cycles. Time complexity of this algorithm is now O(n3 lg n).

We can’t use Strassen, etc. since our new multiplication and addition operations
don’t support negation.

Floyd-Warshall: Dynamic Programming, attempt 2
(k)

1.	 Sub-problems: cuv = weight of shortest path u → v whose intermediate
vertices ∈ {1, 2, . . . , k}

2.	 Guessing: Does shortest path use vertex k?

3.	 Recurrence:
(k) (k−1) (k−1) (k−1)
cuv = min(cuv , c + c)uk kv

(0)cuv = w(u, v)

4.	 Topological ordering: for k: for u and v in V :

(n)	 (n)
5. Original problem: δ(u, v) = cuv . Negative weight cycle ⇔ negative cuu

Time complexity

This Dynamic Program contains O(V 3) problems as well. However, in this case, it
takes only O(1) time to solve each sub-problem, which means that the total runtime
of this algorithm is O(V 3).

Bottom up via relaxation

1 C = (w(u, v))
2 for k = 1 to n by 1
3 for u in V
4 for v in V
5 if cuv > cuk + ckv

6 cuv = cuk + ckv

As before, we choose to ignore subscripts.

4

6.046J

Lecture 11	 All-Pairs Shortest Paths Spring 2015

Johnson’s algorithm

1. Find function h : V → R such that wh(u, v) = w(u, v) + h(u) − h(v) ≥ 0 for all
u, v ∈ V or determine that a negative-weight cycle exists.

2. Run Dijkstra’s algorithm on (V, E, wh) from every source vertex s ∈ V ⇒ get
δh(u, v) for all u, v ∈ V

3. Given δh(u, v), it is easy to compute δ(u, v)

Claim. δ(u, v) = δh(u, v) − h(u) + h(v)

Proof. Look at any u → v path p in the graph G

•	 Say p is v0 → v1 → v2 → · · · → vk, where v0 = u and vk = v.

k
wh(p) = wh(vi−1, vi)

i=1

k

= [w(vi−1, vi) + h(vi−1) − h(vi)]

i=1

k
= w(vi−1, vi) + h(v0) − h(vk)

i=1

= w(p) + h(u) − h(v)

•	 Hence all u → v paths change in weight by the same offset h(u) − h(v),
which implies that the shortest path is preserved (but offset).

How to find h?

We know that
wh(u, v) = w(u, v) + h(u) − h(v) ≥ 0

This is equivalent to,
h(v) − h(u) ≤ w(u, v)

for all (u, v) ∈ V . This is called a system of difference constraints.

Theorem. If (V, E, w) has a negative-weight cycle, then there exists no solution to
the above system of difference constraints.

5

6.046J

Lecture 11	 All-Pairs Shortest Paths Spring 2015

Proof. Say v0 → v1 → · · · → vk → v0 is a negative weight cycle.
Let us assume to the contrary that the system of difference constraints has a

solution; let’s call it h.
This gives us the following system of equations,

h(v1) − h(v0) ≤ w(v0, v1)

h(v2) − h(v1) ≤ w(v1, v2)
. . .

h(vk) − h(vk−1) ≤ w(vk−1, vk)

h(v0) − h(vk) ≤ w(vk, v0)

Summing all these equations gives us

0 ≤ w(cycle) < 0

which is obviously not possible.
From this, we can conclude that no solution to the above system of difference

constraints exists if the graph (V, E, w) has a negative weight cycle.

Theorem. If (V, E, w) has no negative-weight cycle, then we can find a solution to
the difference constraints.

Proof. Add a new vertex s to G, and add edges (s, v) of weight 0 for all v ∈ V .

•	 Clearly, these new edges do not introduce any new negative weight cycles to the
graph

•	 Adding these new edges ensures that there now exists at least one path from s
to v. This implies that δ(s, v) is finite for all v ∈ V

•	 We now claim that h(v) = δ(s, v). This is obvious from the triangle inequality:
δ(s, u)+ w(u, v) ≥ δ(s, v) ⇔ δ(s, v) − δ(s, u) ≤ w(u, v) ⇔ h(v) −h(u) ≤ w(u, v)

Time complexity

1. The first step involves running Bellman-Ford from s, which takes O(V E) time.
We also pay a pre-processing cost to reweight all the edges (O(E))

6

6.046J

Lecture 11 All-Pairs Shortest Paths Spring 2015

2. We then run Dijkstra’s algorithm from each of the V vertices in the graph; the
total time complexity of this step is O(V E + V 2 lg V)

3. We then need to reweight the shortest paths for each pair; this takes O(V 2)
time.

The total running time of this algorithm is O(V E + V 2 lg V).

Applications

Bellman-Ford consult any system of difference constraints (or report that it is un­
solvable) in O(V E) time where V = variables and E = constraints.

An exercise is to prove the Bellman-Ford minimizes maxi xi −mini xi.
This has applications to

• Real-time programming

• Multimedia scheduling

• Temporal reasoning

For example, you can bound the duration of an event via difference constraint
LB ≤ tend − tstart ≤ UB, or bound a gap between events via 0 ≤ tstart2 − tend1 ≤ ε,
or synchronize events via |tstart1 − tstart2| ≤ ε or 0.

7

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

