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Lecture 11: All-Pairs Shortest Paths 

Introduction 

Different types of algorithms can be used to solve the all-pairs shortest paths problem: 

•	 Dynamic programming 

•	 Matrix multiplication 

•	 Floyd-Warshall algorithm 

•	 Johnson’s algorithm 

•	 Difference constraints 

Single-source shortest paths 

•	 given directed graph G = (V,E), vertex s ∈ V and edge weights w : E → R 

•	 find δ(s, v), equal to the shortest-path weight s− > v,  ∀v ∈ V (or −∞ if negative 
weight cycle along the way, or ∞ if no path) 

Situtation Algorithm Time 
unweighted (w = 1)  

non-negative edge weights 
general 

acyclic graph (DAG) 

BFS 
Dijkstra 

Bellman-Ford 
Topological sort + one pass of B-F 

O(V + E) 
O(E + V lg V ) 

O(V E) 
O(V + E) 

All of the above results are the best known. We achieve a O(E + V lg V ) bound 
on Dijkstra’s algorithm using Fibonacci heaps. 

All-pairs shortest paths 

•	 given edge-weighted graph, G = (V, E, w) 

•	 find δ(u, v) for all u, v ∈ V 

1
 

6.046J



Lecture 11	 All-Pairs Shortest Paths  Spring 2015
 

A simple way of solving All-Pairs Shortest Paths (APSP) problems is by running 
a single-source shortest path algorithm from each of the V vertices in the graph. 

Situtation Algorithm Time E = Θ(V 2) 
unweighted (w = 1)  

non-negative edge weights 
general 
general 

|V |× BFS 
|V |× Dijkstra 

|V |× Bellman-Ford 
Johnson’s 

O(V E) 
O(V E  + V 2 lg V ) 

O(V 2E) 
O(V E  + V 2 lg V ) 

O(V 3) 
O(V 3) 
O(V 4) 
O(V 3) 

These results (apart from the third) are also best known — don’t know how to 
beat |V |× Dijkstra 

Algorithms to solve APSP 

Note that for all the algorithms described below, we assume that w(u, v) =  ∞ if 
(u, v)  ∈ E. 

Dynamic Programming, attempt 1 
(m)

1.	 Sub-problems: duv = weight of shortest path u → v using ≤ m edges 

2.	 Guessing: What’s the last edge (x, v)? 

3.	 Recurrence: 
d(m) = min(d(m−1) + w(x, v) for  x ∈ V )uv ux  

d(0) uv =
0 

∞ 

if  u = v 

otherwise 

4.	 Topological ordering: for m = 0, 1, 2, . . . , n− 1: for u and v in V : 

5.	 Original problem: 

If graph contains no negative-weight cycles (by Bellman-Ford analysis), then 
(n−1) (n)

shortest path is simple ⇒ δ(u, v) =  duv = duv = · · ·  

Time complexity 

In this Dynamic Program, we have O(V 3) total sub-problems. 
Each sub-problem takes O(V ) time to solve, since we need to consider V possible 

choices. This gives a total runtime complexity of O(V 4). 
Note that this is no better than |V |× Bellman-Ford 
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Bottom-up via relaxation steps
 

1 for m = 1  to n by 1 
2 for u in V 
3 for v in V 
4 for x in V 
5 if duv > dux + dxv 

6 duv = dux + dxv 

In the above pseudocode, we omit superscripts because more relaxation can never 
hurt. 

(m) Lm/21 Lm/21
Note that we can change our relaxation step to duv = min(dux +dxv for x ∈ V ). 

This change would produce an overall running time of O(n3 lg n) time. (student sug­
gestion) 

Matrix multiplication 

Recall the task of standard matrix multiplication,  nGiven n× n matrices A and B, compute C = A · B, such that cij = k=1 aik · bkj . 

• O(n3) using standard algorithm 

• O(n2.807) using Strassen’s algorithm 

• O(n2.376) using Coppersmith-Winograd algorithm 

• O(n2.3728) using Vassilevska Williams algorithm 

Connection to shortest paths 

• Define ⊕ = min and 8 = +  

• Then, C = A8 B produces cij = mink(aik + bkj ) 

• Define D(m) = (d
(m)

), W = (w(i, j)), V = {1, 2, . . . , n}ij 

With the above definitions, we see that D(m) can be expressed as D(m−1) 8 W . 
In other words, D(m) can be expressed as the circle-multiplication of W with itself m 
times. 
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Matrix multiplication algorithm 

•	 n− 2 multiplications ⇒ O(n4) time (stil no better) 

((W 2)2)2··· W 2lg n 
W n−1•	 Repeated squaring: = = = (δ(i, j)) if no negative-

weight cycles. Time complexity of this algorithm is now O(n3 lg n). 

We can’t use Strassen, etc. since our new multiplication and addition operations 
don’t support negation. 

Floyd-Warshall: Dynamic Programming, attempt 2 
(k)

1.	 Sub-problems: cuv = weight of shortest path u → v whose intermediate 
vertices ∈ {1, 2, . . . , k} 

2.	 Guessing: Does shortest path use vertex k? 

3.	 Recurrence: 
(k) (k−1) (k−1) (k−1)
cuv = min(cuv , c + c )uk kv 

(0)cuv = w(u, v) 

4.	 Topological ordering: for k: for  u and v in V : 

(n)	 (n)
5. Original problem: δ(u, v) =  cuv . Negative weight cycle ⇔ negative cuu 

Time complexity 

This Dynamic Program contains O(V 3) problems as well. However, in this case, it 
takes only O(1) time to solve each sub-problem, which means that the total runtime 
of this algorithm is O(V 3). 

Bottom up via relaxation 

1 C = (w(u, v)) 
2 for k = 1  to n by 1 
3 for u in V 
4 for v in V 
5 if cuv > cuk + ckv 

6 cuv = cuk + ckv 

As before, we choose to ignore subscripts. 

4
 

6.046J



Lecture 11	 All-Pairs Shortest Paths  Spring 2015
 

Johnson’s algorithm 

1. Find function h : V → R such that wh(u, v) =  w(u, v) +  h(u) − h(v) ≥ 0 for all 
u, v ∈ V or determine that a negative-weight cycle exists. 

2. Run Dijkstra’s algorithm on (V, E, wh) from every source vertex s ∈ V ⇒ get 
δh(u, v) for all u, v ∈ V 

3. Given δh(u, v), it is easy to compute δ(u, v) 

Claim. δ(u, v) =  δh(u, v) − h(u) +  h(v) 

Proof. Look at any u → v path p in the graph G 

•	 Say p is v0 → v1 → v2 → · · · → vk, where  v0 = u and vk = v. 

k 
wh(p) =  wh(vi−1, vi)
 

i=1
 

k
 
= [w(vi−1, vi) +  h(vi−1) − h(vi)] 

i=1 

k 
= w(vi−1, vi) +  h(v0) − h(vk) 

i=1 

= w(p) +  h(u) − h(v) 

•	 Hence all u → v paths change in weight by the same offset h(u) − h(v), 
which implies that the shortest path is preserved (but offset). 

How to find  h? 

We know that 
wh(u, v) =  w(u, v) +  h(u) − h(v) ≥ 0 

This is equivalent to, 
h(v) − h(u) ≤ w(u, v) 

for all (u, v) ∈ V . This is called a system of difference constraints. 

Theorem. If (V, E, w) has a negative-weight cycle, then there exists no solution to 
the above system of difference constraints. 
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Proof. Say v0 → v1 → · · · → vk → v0 is a negative weight cycle. 
Let us assume to the contrary that the system of difference constraints has a 

solution; let’s call it h. 
This gives us the following system of equations, 

h(v1) − h(v0) ≤ w(v0, v1) 

h(v2) − h(v1) ≤ w(v1, v2) 
. . . 

h(vk) − h(vk−1) ≤ w(vk−1, vk) 

h(v0) − h(vk) ≤ w(vk, v0) 

Summing all these equations gives us 

0 ≤ w(cycle) < 0 

which is obviously not possible. 
From this, we can conclude that no solution to the above system of difference 

constraints exists if the graph (V, E, w) has a negative weight cycle. 

Theorem. If (V, E, w) has no negative-weight cycle, then we can find a solution to 
the difference constraints. 

Proof. Add a new vertex s to G, and  add edges  (s, v) of weight 0 for all v ∈ V . 

•	 Clearly, these new edges do not introduce any new negative weight cycles to the 
graph 

•	 Adding these new edges ensures that there now exists at least one path from s 
to v. This implies that δ(s, v) is finite for all v ∈ V 

•	 We now claim that h(v) =  δ(s, v). This is obvious from the triangle inequality: 
δ(s, u)+  w(u, v) ≥ δ(s, v) ⇔ δ(s, v) − δ(s, u) ≤ w(u, v) ⇔ h(v) −h(u) ≤ w(u, v) 

Time complexity 

1. The first step involves running Bellman-Ford from s, which takes O(V E) time. 
We also pay a pre-processing cost to reweight all the edges (O(E)) 
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2. We then run Dijkstra’s algorithm from each of the V vertices in the graph; the 
total time complexity of this step is O(V E + V 2 lg V ) 

3. We then need to reweight the shortest paths for each pair; this takes O(V 2) 
time. 

The total running time of this algorithm is O(V E + V 2 lg V ). 

Applications 

Bellman-Ford consult any system of difference constraints (or report that it is un­
solvable) in O(V E) time where V = variables and E = constraints. 

An exercise is to prove the Bellman-Ford minimizes maxi xi −mini xi. 
This has applications to 

• Real-time programming 

• Multimedia scheduling 

• Temporal reasoning 

For example, you can bound the duration of an event via difference constraint 
LB ≤ tend − tstart ≤ UB, or bound a gap between events via 0 ≤ tstart2 − tend1 ≤ ε, 
or synchronize events via |tstart1 − tstart2| ≤ ε or 0. 
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