Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

Lecture 11: All-Pairs Shortest Paths

Introduction

Different types of algorithms can be used to solve the all-pairs shortest paths problem:

e Dynamic programming

Matrix multiplication

Floyd-Warshall algorithm

Johnson’s algorithm

e Difference constraints

Single-source shortest paths

e given directed graph G' = (V| E), vertex s € V and edge weights w : £ — R

e find 0(s,v), equal to the shortest-path weight s— > v, Vv € V' (or —oc if negative
weight cycle along the way, or oo if no path)

Situtation Algorithm Time
unweighted (w = 1) BFS O(V+E)
non-negative edge weights Dijkstra OE+VigV)

general Bellman-Ford O(VE)
acyclic graph (DAG) Topological sort + one pass of B-F OV + E)

All of the above results are the best known. We achieve a O(E + V' IgV') bound
on Dijkstra’s algorithm using Fibonacci heaps.

All-pairs shortest paths
e given edge-weighted graph, G = (V, £, w)

e find 0(u,v) for all u,v € V

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

A simple way of solving All-Pairs Shortest Paths (APSP) problems is by running
a single-source shortest path algorithm from each of the V' vertices in the graph.

Situtation Algorithm Time E =06(V?)
unweighted (w = 1) |V|x BFS O(VE) O(V3)
non-negative edge weights |V|x Dijkstra O(VE+V?igV) o(V3)
general |V|x Bellman-Ford O(V?E) o(V*4)
general Johnson’s O(VE+V?%igV) o(V3)

These results (apart from the third) are also best known — don’t know how to
beat |[V|x Dijkstra

Algorithms to solve APSP

Note that for all the algorithms described below, we assume that w(u,v) = oo if

(u,v) € E.

Dynamic Programming, attempt 1

1. Sub-problems: dm = weight of shortest path v — v using < m edges
2. Guessing: What’s the last edge (z,v)?

3. Recurrence:
d™ = min(d" Y + w(zx,v) for z € V)

dﬁﬁ) _ 0 fu=w
oo otherwise

4. Topological ordering: for m =0,1,2,...,n — 1: for v and v in V:

5. Original problem:

If graph contains no negative-weight cycles (by Bellman-Ford analysis), then
shortest path is simple = d(u,v) = D =g = ...

Time complexity

In this Dynamic Program, we have O(V?) total sub-problems.

Each sub-problem takes O(V') time to solve, since we need to consider V' possible
choices. This gives a total runtime complexity of O(V?).

Note that this is no better than |V|x Bellman-Ford

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

Bottom-up via relaxation steps

1 form=1tonbyl

2 for uin V

3 for vin V

4 for zin V

5 if dyy > dyg + dyy

6 duy = dug + dyy

In the above pseudocode, we omit superscripts because more relaxation can never
hurt.

Note that we can change our relaxation step to dm = min(dLT/ A alm/ for z € V).
This change would produce an overall running time of O(n®Ign) time. (student sug-

gestion)

Matrix multiplication

Recall the task of standard matrix multiplication,
Given n x n matrices A and B, compute C' = A - B, such that ¢;; = >}, @i - by;.

n?) using standard algorithm

2.376)

n

(

e O(n?®7) using Strassen’s algorithm
(using Coppersmith-Winograd algorithm
(

Connection to shortest paths

e Define ® = min and ©® = +
e Then, C = A® B produces ¢;; = ming(a;, + bg;)

e Define D™ = (&™), W = (w(i,), V = {1,2,...,n}

v

With the above definitions, we see that D™ can be expressed as D™D @ W.
In other words, D™ can be expressed as the circle-multiplication of W with itself m
times.

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

Matrix multiplication algorithm

e n — 2 multiplications = O(n*) time (stil no better)

o Repeated squaring: ((W2)2)2" = W2*" = Wn! = (4(,5)) if no negative-
weight cycles. Time complexity of this algorithm is now O(n®lgn).

We can’t use Strassen, etc. since our new multiplication and addition operations
don’t support negation.

Floyd-Warshall: Dynamic Programming, attempt 2

1. Sub-problems: B = weight of shortest path u — v whose intermediate

vertices € {1,2,... k}
2. Guessing: Does shortest path use vertex k7

3. Recurrence:

) = min(c™, b7V + e 7Y)
cq(gj) = w(u,v)

4. Topological ordering: for k: for v and v in V:

5. Original problem: §(u,v) =). Negative weight cycle < negative c\

Time complexity

This Dynamic Program contains O(V?) problems as well. However, in this case, it
takes only O(1) time to solve each sub-problem, which means that the total runtime
of this algorithm is O(V?%).

Bottom up via relaxation

1 C=(w(u,v))

2 fork=1tonbyl

3 for v in V

4 for v in V

5 if cuy > Cur + Cro

6 Cuv = Cuk + Cko

As before, we choose to ignore subscripts.

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

Johnson’s algorithm

1. Find function A : V' — R such that wy,(u,v) = w(u,v) + h(u) — h(v) > 0 for all
u,v € V or determine that a negative-weight cycle exists.

2. Run Dijkstra’s algorithm on (V, E, wy,) from every source vertex s € V = get
On(u,v) for all u,v € V

3. Given 0y (u,v), it is easy to compute 0 (u,v)
Claim. 6(u,v) = op(u,v) — h(u) + h(v)
Proof. Look at any v — v path p in the graph G

e Say pis vy — vy — Vg — -+ — U, where vy = u and vy = v.

wh(p) = Z wh(Ui—h Ui)

k

= Z[w(vi_l, v;) + h(vi—1) — h(v;)]
= Z U)(Uz;l, Ui) + h(UO) - h(’Uk)

i=1

= w(p) + h(u) = h(v)

e Hence all u — v paths change in weight by the same offset h(u) — h(v),
which implies that the shortest path is preserved (but offset).

]

How to find h?

We know that
wp(u,v) = w(u,v) + h(u) — h(v) >0

This is equivalent to,

h(v) — h(u) < w(u,v)

for all (u,v) € V. This is called a system of difference constraints.

Theorem. If (V, E,w) has a negative-weight cycle, then there exists no solution to
the above system of difference constraints.

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

Proof. Say vg — v — --- — v — vy is a negative weight cycle.

Let us assume to the contrary that the system of difference constraints has a
solution; let’s call it A.

This gives us the following system of equations,

h(vy) — h(vg) < w(vg,v1)

h(vy) — h(v1) < w(vy,vy)
h(vk) — h(vg-1) < w(vg-1,vx)

h(vg) — h(vr) < w(vg,vo)

Summing all these equations gives us
0 < w(cycle) <0

which is obviously not possible.
From this, we can conclude that no solution to the above system of difference

constraints exists if the graph (V, E, w) has a negative weight cycle.
O

Theorem. If (V, E,w) has no negative-weight cycle, then we can find a solution to
the difference constraints.

Proof. Add a new vertex s to G, and add edges (s, v) of weight 0 for all v € V.

e (learly, these new edges do not introduce any new negative weight cycles to the
graph

e Adding these new edges ensures that there now exists at least one path from s
to v. This implies that 0(s,v) is finite for all v € V

e We now claim that h(v) = §(s,v). This is obvious from the triangle inequality:
d(s,u) +w(u,v) > d(s,v) < 0(s,v) — (s, u) < w(u,v) < h(v)—h(u) < w(u,v)

O

Time complexity

1. The first step involves running Bellman-Ford from s, which takes O(V E) time.
We also pay a pre-processing cost to reweight all the edges (O(F))

Lecture 11 All-Pairs Shortest Paths 6.046J Spring 2015

2. We then run Dijkstra’s algorithm from each of the V' vertices in the graph; the
total time complexity of this step is O(VE + V21g V)

3. We then need to reweight the shortest paths for each pair; this takes O(V?)
time.

The total running time of this algorithm is O(VE + V?1g V).

Applications

Bellman-Ford consult any system of difference constraints (or report that it is un-
solvable) in O(V E) time where V' = variables and F = constraints.

An exercise is to prove the Bellman-Ford minimizes max; x; — min; ;.

This has applications to

e Real-time programming
e Multimedia scheduling

e Temporal reasoning

For example, you can bound the duration of an event via difference constraint
LB < tena — tsiart < UB, or bound a gap between events via 0 < tg4m0 — tenar < €,
or synchronize events via |tsar1 — tstarz| < € or 0.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

