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Lecture 8: Hashing
 

Course Overview 

This course covers several modules: 

1. Review: dictionaries, chaining, simple uniform 

2. Universal hashing 

3. Perfect hashing 

Review 

Dictionary Problem 

A dictionary is an Abstract Data Type (ADT) that maintains a set of items. Each 
item has a key. The dictionary supports the following operations: 

• insert(item): add item to set 

• delete(item): remove item from set 

• search(key): return item with key if it exists 

We assume that items have distinct keys (or that inserting new ones clobbers old 
ones). 

This problem is easier than predecessor/successor problems solved in previous 
lecture (by van Emde Boas trees, or by AVL/2-3 trees/skip lists). 

Hashing from 6.006 

Goal: O(1) time per operation and O(n) space complexity. 
Definitions: 

• u = number of keys over all possible items 

• n = number of keys/items currently in the table 

• m = number of slots in the table 
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Solution: hashing with chaining 
Assuming simple uniform hashing, 

1 
Pr {h(k1) =  h(k2)} = 
=k2k1 � m 

we achieve Θ(1 + α) time per operation, where α = n is called load factor. The 
m 

downside of the algorithm is that it requires assuming input keys are random, and it 
only works in average case, like basic quicksort. Today we are going to remove the 
unreasonable simple uniform hashing assumption. 

Etymology 

The English ‘hash’ (1650s) means “cut into small pieces”, which comes from the 
French ‘hacher‘ which means “chop up”, which comes from the Old French ‘hache’ 
which means “axe” (cf. English ‘hatchet’). Alternatively, perhaps they come from 
Vulcan ‘la’ash’, which means “axe”. (R.I.P. Leonard Nimoy.) 

Universal Hashing 

The idea of universal hashing is listed as following: 

• choose a random hash function h from H 

• require H to be a universal hashing family such that 

1 
Pr {h(k) =  h(k')} ≤  for all k = k' 
h∈H m 

. 
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•	 now we just assume h is random, and make no assumption about input keys. 
(like Randomized Quicksort) 

Theorem: For  n arbitrary distinct keys and random h ∈ H, where  H is a universal 
hashing family, 

n 
E[ number of keys colliding in a slot ] ≤ 1 +  α where α = 

m  

1 if  h(ki) =  h(kj )

Proof : Consider keys k1, k2, . . . , kn. Let  Ii,j =
0 otherwise 

. Then  we  have  

E[Ii,j ] = Pr{Ii,j = 1} 

= Pr{h(ki) =  h(kj )}
1 

(1) 

≤ for any j = i 
m 

Ln
j=1 

E[# keys hashing to the same slot as ki] =  E Ii,j 

n L

E[Ii,j ] (linearity of expectation) =
 

j=1 L

E[Ii,j ] +  E[Ii,i]=


≤ 

j=i 

n 
m 

+ 1  

(2) 

D 
From the above theorem, we know that Insert, Delete, and Search all take O(1+α) 

expected time. Here we give some examples of universal hash functions. 

All hash functions: H = {all hash functions h : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 
1}}. Apparently, H is universal, but it is useless. On one hand, storing a single 
hashing function h takes log(mu) =  u log(m) bits » n bits. On the other hand, we 
would need to precompute u values, which takes Ω(u) time. 

Dot-product hash family: 
Assumptions 

•	 m is a prime 
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• u = mr where r is an integer

In real cases, we can always round up m and u to satisfy the above assumptions. Now

let’s view keys in base m: k = 〈k0, k1, . . . , kr−1〉. For key a = 〈a0, a1, a2, . . . , ar−1〉,
define

ha(k) = a · k mod m (dot product)

r−1

=
∑ (3)

aiki mod m
i=0

Then our hash family is H = {ha | a ∈ {0, 1, . . . , u− 1}}
Storing ha ∈ H requires just storing one key, which is a. In the word RAM

model, manipulating O(1) machine words takes O(1) time and “objects of interest”

(here, keys) fit into a machine word. Thus computing ha(k) takes O(1) time.

Theorem: Dot-product hash family H is universal.

Proof : Take any two keys k = k′. They must differ in some digits. Say kd = kd′ .

Define not d = {0, 1, . . . , r − 1} \ {d}. Now we have

r−1 r−1

Pr{ha(k) = ha(k
′)} = Pr

{∑
aiki =

∑
aiki
′ (mod m)

a a { i=0 i=0

}

= Pr
∑

aiki + adkd =
∑

aiki
′ + adkd

′ (mod m)
a { i=d i=d

}

= Pr
∑

ai(ki ki
′) + ad(kd kd

′ ) = 0 (mod m)
a { i=d

− −

}

= Pr a = −(k − k′ )−1d d d

∑
ai(ki − ki′) (mod m)

a (4)
i=d

}
(m is prime⇒ Zm has multiplicative inverses)

= E [Pr{ad = f(k, k′, anot d)
anot d ad

}]

(=
∑

Pr{anot d = x}Pr{ad = f(k, k′, x)
ad

x

})

= E
anot d

[
1

m
1

]
=
m

�
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Another universal hash family from CLRS: Choose prime p ≥ u (once). Define 
hab(k) = [(ak + b) mod  p)] mod m. Let  H = {hab | a, b ∈ {0, 1, . . . , u− 1}}. 

Perfect Hashing 

Static dictionary problem: Given  n keys to store in table, only need to support 
search(k). No insertion or deletion will happen. 

Perfect hashing: [Fredman, Komlós, Szemerédi 1984] 

• polynomial build time with high probability (w.h.p.) 

• O(1) time for search in worst case 

• O(n) space in worst case 

Idea: 2-level hashing 

The algorithm contains the following two major steps: 

Step 1: Pick  h1 : {0, 1, . . . , u− 1} → {0, 1, . . . ,m− 1} from a universal hash family 
for m = Θ(n) (e.g., nearby prime). Hash all items with chaining using h1. 
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Step 2: For each slot j ∈ {0, 1, . . . ,m − 1}, let  lj be the number of items in slot j. 
lj = |{i | h(ki) =  j}|. Pick  h2,j : {0, 1, . . . , u − 1} → {0, 1, . . . ,mj } from a universal 
hash family for lj 

2 ≤ mj ≤ O(lj 
2) (e.g., nearby prime). Replace chain in slot j with 

hashing-with-chaining using h2,j . 

L m−1The space complexity is O(n + l2). In order to reduce it to O(n), we need j=0 j 

to add two more steps: 

Lm−1 l2Step 1.5: If  j > cn  where c is a chose constant, then redo Step 1. j=0 

Step 2.5: While h2,j (ki) =  h2,j (ki
' ) for any i = i ' , j, repick h2,j and rehash those lj . 

The above two steps guarantee that there are no collisions at second level, and 
the space complexity is O(n). As a result, search time is O(1). Now let’s look at the 
build time of the algorithm. Both Step 1 and Step 2 are O(n). How about Step 1.5 
and Step 2.5? 

For Step 2.5, L 
Pr{h2,j (ki) =  h2,j (ki

' ) for  some  i = i ' } ≤  Pr{h2,j (ki) =  h2,j (ki
' )} (union bound) 

h2,j h2,j
i=i, 

lj 1 ≤ · 
2 l2 

j 

1 
< 

2 
(5) 

As a result, each trial is like a coin flip. If the outcome is “tail”, we move to the 
next step. By Lecture 7, we have E[#trials] ≤ 2 and #trials = O(log n) w.h.p. By a 
Chernoff bound, lj = O(log n) w.h.p., so each trial takes O(log n) time. Because we 
have to do this for each j, the total time complexity is O(log n) · O(log n) · O(n) =  
O(n log2 n) w.h.p. 
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1 if h(ki) = h(k′)
For Step 1.5, we define I

{
i

i,i′ = . Then we have
0 otherwise

E

[
m∑−1 n n

l2j =
j=0

]
E

[∑
I

i=1

∑
i,i′

i′=1

]
n

=
∑∑n

E[Ii,i′ ] (linearity of expectation)
(6)

i=1 i′=1

n 1≤ n+ 2
2
·
m

= O(n)

(
becau

)
se m = Θ(n)

By Markov inequality, we have

m−1 m−1
2 j=0 l

2
j 1

Pr lj cn
h1

{∑
≤

}
≤
∑
cn

≤
2

j=0

for a sufficiently large constant c. By Lecture 7, we have E[#trials] ≤ 2 and #trials =

O(log n) w.h.p. As a result, Step 1 and Step 1.5 combined takes O(n log n) time w.h.p.
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