

 
 
 

Design and Analysis of Algorithms

6.046J/18.401J

LECTURE 7
Skip Lists
• Data structure
• Randomized insertion

• With high probability

(w.h.p.) bound

7/10/15 Copyright © 2001-8 by Leiserson et al L9.1

 
 
 

 

 

 

Skip lists

• Simple randomized dynamic search structure

– Invented by William Pugh in 1989
– Easy to implement

• Maintains a dynamic set of n elements in
O(lg n) time per operation in expectation and
with high probability
– Strong guarantee on tail of distribution of T(n)

– O(lg n) "almost always"

7/10/15 Copyright © 2001-8 by Leiserson et al L9.2

 
 

One linked list

Start from simplest data structure:
(sorted) linked list

• Searches take Θ(n) time in worst case

• How can we speed up searches?

14 23 34 42 50 59 66 72 79

7/10/15 Copyright © 2001-8 by Leiserson et al L9.3

 
 

Two linked lists

Suppose we had two sorted linked lists
(on subsets of the elements)

• Each element can appear in one or both lists

• How can we speed up searches?

14 23 34 42 50 59 66 72 79

7/10/15 Copyright © 2001-8 by Leiserson et al L9.4

 
 
 

Two linked lists as a subway

IDEA: Express and local subway lines
(à la New York City 7th Avenue Line)

• Express line connects a few of the stations

• Local line connects all stations
• Links between lines at common stations

14 23 34 42 50 59 66 72 79

14 34 42 72

7/10/15 Copyright © 2001-8 by Leiserson et al L9.5

 

 
 

Searching in two linked lists

SEARCH(x):
• Walk right in top linked list (L1)

until going right would go too far
• Walk down to bottom linked list (L2)
• Walk right in L2 until element found (or not)

14 23 34 42 50 59 66 72 79

14 34 42 72

7/10/15 Copyright © 2001-8 by Leiserson et al L9.6

42 50 59

14 34 42 72

Searching in two linked lists

EXAMPLE: SEARCH(59)

14 23 34 66 72 79

14 34 42

Too far:
59 < 72

42 50 59

72

7/10/15 Copyright © 2001-8 by Leiserson et al L9.7

 
 
 
 

42 50 59

14 34 42

Design of two linked lists

QUESTION: Which nodes should be in L1?
• In a subway, the "popular stations"
• Here we care about worst-case performance

• Best approach: Evenly space the nodes in L1

• But how many nodes should be in L1?

14 23 34 66 72 79

7214 34 42

42 50 59

7/10/15 Copyright © 2001-8 by Leiserson et al L9.8

 
 

 

42 50 59

14 34 42

Analysis of two linked lists

ANALYSIS: L2• Search cost is roughly +L1 L1• Minimized (up to

constant factors) when terms are equal
2• L1 = L2 = n ⇒ L1 = n

14 23 34 66 72 79

7214 34 42

42 50 59

7/10/15 Copyright © 2001-8 by Leiserson et al L9.9

 
 

Analysis of two linked lists

ANALYSIS:

L2
 = n• = n ,L1

• Search cost is roughly
L2
 nL1
 + = n + = 2 n
L1
 n

14 23 34 42 50 59 66 72 79

14 42 66

n n n

n

7/10/15 Copyright © 2001-8 by Leiserson et al L9.10

 
 
 
 

More linked lists

What if we had more sorted linked lists?

• 2 sorted lists ⇒ 2 ⋅ n

• 3 sorted lists ⇒ 3 ⋅ 3 n

• k sorted lists ⇒ k ⋅ k n
• lg n sorted lists ⇒ lg n ⋅ lgn n = 2lg n

14 23 34 42 50 59 66 72 79

14 42 66

n n n

n

7/10/15 Copyright © 2001-8 by Leiserson et al L9.11

lg n linked lists

lg n sorted linked lists are like a binary tree

(in fact, level-linked B+-tree)

14 23 34 42 50 59 66 72 79

14 34 6650 79

14 50 79

14 79

7/10/15 Copyright © 2001-8 by Leiserson et al L9.12

66 72

66 50 79

14 50 79

14 79

Searching in lg n linked lists

EXAMPLE: SEARCH(72)

14 23 34 42 50 59 79

14 34

14 79

14 50 79

50 66 79

66 72

7/10/15 Copyright © 2001-8 by Leiserson et al L9.13

Skip lists

Ideal skip list is this lg n linked list structure

Skip list data structure maintains roughly this

structure subject to updates (insert/delete)

14 23 34 42 50 59 66 72 79

14 34 6650 79

14 50 79

14 79

7/10/15 Copyright © 2001-8 by Leiserson et al L9.14

 
 

 

INSERT(x)

To insert an element x into a skip list:
• SEARCH(x) to see where x fits in bottom list
• Always insert into bottom list

INVARIANT: Bottom list contains all elements

• Insert into some of the lists above…

QUESTION: To which other lists should we add x?

7/10/15 Copyright © 2001-8 by Leiserson et al L9.15

 
 

 
 
 

 

INSERT(x)

QUESTION: To which other lists should we add x?
IDEA: Flip a (fair) coin; if HEADS,

promote x to next level up and flip again
• Probability of promotion to next level = p = 1/2

• On average:

– 1/2 of the elements promoted 0 levels

– 1/4 of the elements promoted 1 level

– 1/8 of the elements promoted 2 levels

– etc.

Approx.
balance

d?

7/10/15 Copyright © 2001-8 by Leiserson et al L9.16

 

Example of skip list

EXERCISE: Try building a skip list from scratch
by repeated insertion using a real coin

Small change:
• Add special −∞

value to every list
⇒ can search with

the same algorithm
 −∞ 23 34 42 50

−∞ 34 50

−∞ 50

7/10/15 Copyright © 2001-8 by Leiserson et al L9.17

 

 

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it

7/10/15 Copyright © 2001-8 by Leiserson et al L9.18

 

 

 
 

Skip lists

A skip list is the result of insertions (and
deletions) from an initially empty structure
(containing just −∞)

• INSERT(x) uses random coin flips to decide
promotion level

• DELETE(x) removes x from all lists containing it

How good are skip lists? (speed/balance)
• INTUITIVELY: Pretty good on average
• Expected Time for Search: O(lg n)

7/10/15 Copyright © 2001-8 by Leiserson et al L9.19

 
 

 

 

 

Expected Time for SEARCH

•	 Search for target begins with head element in top list
•	 Proceed horizontally until current element greater than or

equal to target
•	 If the current element is equal to the target, it has been

found. If the current element is greater than the target, go
back to the previous element and drop down vertically to
the next lower list and repeat the procedure.

•	 The expected number of steps in each linked list is seen to
be 1/p, by tracing the search path backwards from the
target until reaching an element that appears in the next
higher list.

•	 The total expected cost of a search is O(log1/p n) · (1/p)
which is O(lg n) when p is a constant

7/10/15 	 Copyright © 2001-8 by Leiserson et al L9.20

With-high-probability theorem

THEOREM: With high probability, every search

in an n-element skip list costs O(lg n)

7/10/15 Copyright © 2001-8 by Leiserson et al L9.21

 

 
 

With-high-probability theorem

THEOREM: With high probability, every search

in a skip list costs O(lg n)
•	 INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)
– In fact, constant in O(lg n) depends on α

•	 FORMALLY: Parameterized event Eα occurs
with high probability if, for any α ≥ 1, there is
an appropriate choice of constants for which
Eα occurs with probability at least 1 − cα/nα

7/10/15 	 Copyright © 2001-8 by Leiserson et al L9.22

 

 

 

With-high-probability theorem

THEOREM: With high probability, every search

in a skip list costs O(lg n)
•	 INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an
appropriate choice of constants for which
E occurs with probability at least 1 − O(1/nα)

• IDEA: Can make error probability O(1/nα)

very small by setting α large, e.g., 100

• Almost certainly, bound remains true for entire
execution of polynomial-time algorithm
7/10/15 	 Copyright © 2001-8 by Leiserson et al L9.23

Boole's inequality / union bound

Recall:

BOOLE'S INEQUALITY / UNION BOUND:
For any random events E1, E2, …, Ek ,

Pr{E1 ∪ E2 ∪ … ∪ Ek}
≤ Pr{E1} + Pr{E2} + … + Pr{Ek}

Application to with-high-probability events:

If k = nO(1), and each Ei occurs with high
probability, then so does E1 ∩ E2 ∩ … ∩ Ek

7/10/15 Copyright © 2001-8 by Leiserson et al L9.24

 
 
 
 

Analysis Warmup

LEMMA: n-element skip list has O(lg n) expected number of

levels
PROOF:
• Probability that x has been promoted once is p
• Probability that x has been promoted k times is pk f
• Expected number of promotions is
• Sigma I = 0 \infty i. p^I = O(log Error probability for

having at most c lg n levels

= Pr{more than c lg n levels}

≤ n · Pr{element x promoted at least c lg n times}

(by Boole's Inequality)
= n · (1/2c lg n)
= n · (1/nc)
= 1/ nc − 1

7/10/15 Copyright © 2001-8 by Leiserson et al L9.25

 

 

 

Analysis Warmup

LEMMA: With high probability,

n-element skip list has O(lg n) levels
PROOF:
• Error probability for having at most c lg n levels

≤ 1/nc − 1

• This probability is polynomially small,
i.e., at most nα for α = c − 1.

• We can make α arbitrarily large by choosing the

constant c in the O(lg n) bound accordingly.

7/10/15 Copyright © 2001-8 by Leiserson et al L9.26

 
 

 

 

 

Proof of theorem

THEOREM: Every search in an n-element skip list

costs O(lg n) expected time
COOL IDEA: Analyze search backwards—leaf to root

• Search starts [ends] at leaf (node in bottom level)
• At each node visited:

– If node wasn't promoted higher (got TAILS here),

then we go [came from] left

– If node was promoted higher (got HEADS here),

then we go [came from] up

• Search stops [starts] at the root (or −∞)

7/10/15 Copyright © 2001-8 by Leiserson et al L9.27

 

 

 

Proof of theorem

THEOREM: With high probability, every search

in an n-element skip list costs O(lg n)
COOL IDEA: Analyze search backwards—leaf to root
PROOF:
• Search makes "up" and "left" moves

until it reaches the root (or −∞)
• Expected number of "up" moves < num. of levels

≤ O(lg n) (Lemma)
• ⇒ w.h.p., number of moves is at most the number

of times we need to flip a coin to get c lg n HEADs

7/10/15 Copyright © 2001-8 by Leiserson et al L9.28

Chernoff Bounds

THEOREM (CHERNOFF): Let Y be a random
variable representing the total number of
heads (tails) in a series of m independent coin
flips, where each flip has a probability p of
coming up heads (tails). Then, for all r > 0,

Pr[Y ≥ E[Y] + r] ≤ e-2r2/m

7/10/15 Copyright © 2001-8 by Leiserson et al L9.29

Lemma

LEMMA: For any c there is a constant d such
that w.h.p. the number of heads in flipping
d lg n fair coins is at least c lg n.
PROOF: Let Y be the number of tails when
flipping a fair coin d lg n times. p = ½.
m = d lgn, so E[Y] = ½ m = ½ d lgn
We want to bound the probability of ≤ c lg n
heads = probability of ≥ d lg n – c lg n tails.

7/10/15 Copyright © 2001-8 by Leiserson et al L9.30

Lemma Proof (contd.)

Pr[Y ≥ (d – c) lg n]=
 Pr[Y ≥ E[Y] + (½ d – c) lg n]
Choose d = 3c => r = 3clg n
By Chernoff, probability of ≤ c lg n heads is
 ≤ e 2 2-2r /m = e-2(3clg n) /8clg n= e-9/4clg n

 ≤ e-clg n

 ≤ 2-clg n (e > 2)
 = 1/nc

7/10/15 Copyright © 2001-8 by Leiserson et al L9.31

Proof of theorem (finally!)

THEOREM: With high probability, every search

in an n-element skip list costs O(lg n)
event A: number of levels ≤ c lg n w.h.p.
event B: number of moves until c lg n “up” moves

≤ d lg n w.h.p.
A and B are not independent!

Want to show A & B occurs w.h.p. to prove theorem
Pr(A & B) = Pr(A + B) ≤ Pr(A) + Pr(B) (union bound)

 ≤

1/nc-1 + 1/nc

= O(1/nc-1)
7/10/15 Copyright © 2001-8 by Leiserson et al L9.32

≤

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

