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LECTURE 7 
Skip Lists 
• Data structure 
• Randomized insertion 

• With high probability 

(w.h.p.) bound 
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Skip lists 


• Simple randomized dynamic search structure 

– Invented by William Pugh in 1989 
– Easy to implement 

• Maintains a dynamic set of n elements in 
O(lg n) time per operation in expectation and 
with high probability 
– Strong guarantee on tail of distribution of T(n) 

– O(lg n) "almost always" 
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One linked list 


Start from simplest data structure: 
(sorted) linked list 

• Searches take Θ(n) time in worst case 

• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists 


Suppose we had two sorted linked lists 
(on subsets of the elements) 

• Each element can appear in one or both lists 

• How can we speed up searches? 

14 23 34 42 50 59 66 72 79 
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Two linked lists as a subway 


IDEA: Express and local subway lines 
(à la New York City 7th Avenue Line) 

• Express line connects a few of the stations 

• Local line connects all stations 
• Links between lines at common stations 

14 23 34 42 50 59 66 72 79 

14 34 42 72 
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Searching in two linked lists 


SEARCH(x): 
• Walk right in top linked list (L1) 

until going right would go too far 
• Walk down to bottom linked list (L2) 
• Walk right in L2 until element found (or not) 


14 23 34 42 50 59 66 72 79 

14 34 42 72 
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42 50 59 

14 34 42 72 

Searching in two linked lists 


EXAMPLE: SEARCH(59)
 

14 23 34 66 72 79 

14 34 42 

Too far: 
59 < 72 

42 50 59 

72 

7/10/15 Copyright © 2001-8 by Leiserson et al L9.7 




   
 
 
 

42 50 59 

14 34 42 

Design of two linked lists 

QUESTION: Which nodes should be in L1? 
• In a subway, the "popular stations" 
• Here we care about worst-case performance 

• Best approach: Evenly space the nodes in L1 

• But how many nodes should be in L1? 

14 23 34 66 72 79 

7214 34 42 

42 50 59 
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42 50 59 

14 34 42 

Analysis of two linked lists 

ANALYSIS: L2• Search cost is roughly +L1 L1• Minimized (up to 

constant factors) when terms are equal 
2• L1 = L2 = n ⇒ L1 = n 

14 23 34 66 72 79 

7214 34 42 

42 50 59 

7/10/15 Copyright © 2001-8 by Leiserson et al L9.9 




 
 

Analysis of two linked lists 

ANALYSIS: 

L2
 = n• = n ,L1
 

• Search cost is roughly 
L2
 nL1
 + = n + = 2 n
L1
 n 

14 23 34 42 50 59 66 72 79 

14 42 66 

n n n 

n 
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More linked lists 

What if we had more sorted linked lists? 

• 2 sorted lists ⇒ 2 ⋅ n
 
• 3 sorted lists ⇒ 3 ⋅ 3 n
 
• k sorted lists ⇒ k ⋅ k n 
• lg n sorted lists ⇒ lg n ⋅ lgn n = 2lg n
 

14 23 34 42 50 59 66 72 79 

14 42 66 

n n n 

n 
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lg n linked lists 

lg n sorted linked lists are like a binary tree 

(in fact, level-linked B+-tree) 

14 23 34 42 50 59 66 72 79 

14 34 6650 79 

14 50 79 

14 79 
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66 72 

66 50 79 

14 50 79 

14 79 

Searching in lg n linked lists 

EXAMPLE: SEARCH(72) 


14 23 34 42 50 59 79 

14 34 

14 79 

14 50 79 

50 66 79 

66 72 
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Skip lists 

Ideal skip list is this lg n linked list structure 

Skip list data structure maintains roughly this 


structure subject to updates (insert/delete) 

14 23 34 42 50 59 66 72 79 

14 34 6650 79 

14 50 79 

14 79 
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INSERT(x) 


To insert an element x into a skip list: 
• SEARCH(x) to see where x fits in bottom list 
• Always insert into bottom list 

INVARIANT: Bottom list contains all elements 

• Insert into some of the lists above… 

QUESTION: To which other lists should we add x? 
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INSERT(x) 

QUESTION: To which other lists should we add x? 
IDEA: Flip a (fair) coin; if HEADS, 

promote x to next level up and flip again 
• Probability of promotion to next level = p = 1/2 

• On average: 

– 1/2 of the elements promoted 0 levels 

– 1/4 of the elements promoted 1 level 

– 1/8 of the elements promoted 2 levels 

– etc. 

Approx. 
balance 

d? 
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Example of skip list 


EXERCISE: Try building a skip list from scratch 
by repeated insertion using a real coin 

Small change: 
• Add special −∞ 

value to every list 
⇒ can search with 

the same algorithm 
 −∞ 23 34 42 50 

−∞ 34 50 

−∞ 50 
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Skip lists 


A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 
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Skip lists 


A skip list is the result of insertions (and 
deletions) from an initially empty structure 
(containing just −∞) 

• INSERT(x) uses random coin flips to decide 
promotion level 

• DELETE(x) removes x from all lists containing it 

How good are skip lists? (speed/balance) 
• INTUITIVELY: Pretty good on average 
• Expected Time for Search: O(lg n) 
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Expected Time for SEARCH 


•	 Search for target begins with head element in top list 
•	 Proceed horizontally until current element greater than or

equal to target 
•	 If the current element is equal to the target, it has been

found. If the current element is greater than the target, go
back to the previous element and drop down vertically to
the next lower list and repeat the procedure. 

•	 The expected number of steps in each linked list is seen to
be 1/p, by tracing the search path backwards from the 
target until reaching an element that appears in the next
higher list. 

•	 The total expected cost of a search is O(log1/p n) · (1/p)
which is O(lg n) when p is a constant 
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With-high-probability theorem 

THEOREM: With high probability, every search 

in an n-element skip list costs O(lg n) 
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With-high-probability theorem 

THEOREM: With high probability, every search

in a skip list costs O(lg n) 
•	 INFORMALLY: Event E occurs with high

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 
– In fact, constant in O(lg n) depends on α 

•	 FORMALLY: Parameterized event Eα occurs 
with high probability if, for any α ≥ 1, there is 
an appropriate choice of constants for which 
Eα occurs with probability at least 1 − cα/nα 
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With-high-probability theorem 

THEOREM: With high probability, every search 

in a skip list costs O(lg n) 
•	 INFORMALLY: Event E occurs with high 

probability (w.h.p.) if, for any α ≥ 1, there is an 
appropriate choice of constants for which 
E occurs with probability at least 1 − O(1/nα) 

• IDEA: Can make error probability O(1/nα)
 
very small by setting α large, e.g., 100 


• Almost certainly, bound remains true for entire 
execution of polynomial-time algorithm 
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Boole's inequality / union bound 


Recall: 


BOOLE'S INEQUALITY / UNION BOUND: 
For any random events E1, E2, …, Ek , 

Pr{E1 ∪ E2 ∪ … ∪ Ek} 
≤ Pr{E1} + Pr{E2} + … + Pr{Ek} 

Application to with-high-probability events:
 
If k = nO(1), and each Ei occurs with high 
probability, then so does E1 ∩ E2 ∩ … ∩ Ek
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Analysis Warmup 

LEMMA: n-element skip list has O(lg n) expected number of


levels 
PROOF: 
• Probability that x has been promoted once is p 
• Probability that x has been promoted k times is pk f 
• Expected number of promotions is 
• Sigma I = 0 \infty i. p^I = O(log Error probability for

having at most c lg n levels 

= Pr{more than c lg n levels}

≤ n · Pr{element x promoted at least c lg n times}


(by Boole's Inequality) 
= n · (1/2c lg n) 
= n · (1/nc)
= 1/ nc − 1 
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Analysis Warmup 

LEMMA: With high probability, 

n-element skip list has O(lg n) levels 
PROOF: 
• Error probability for having at most c lg n levels 

≤ 1/nc − 1 

• This probability is polynomially small, 
i.e., at most nα for α = c − 1. 

• We can make α arbitrarily large by choosing the 

constant c in the O(lg n) bound accordingly. 
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Proof of theorem 

THEOREM: Every search in an n-element skip list 

costs O(lg n) expected time 
COOL IDEA: Analyze search backwards—leaf to root 

• Search starts [ends] at leaf (node in bottom level) 
• At each node visited: 

– If node wasn't promoted higher (got TAILS here), 

then we go [came from] left 


– If node was promoted higher (got HEADS here), 

then we go [came from] up 


• Search stops [starts] at the root (or −∞) 
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Proof of theorem 

THEOREM: With high probability, every search

in an n-element skip list costs O(lg n) 
COOL IDEA: Analyze search backwards—leaf to root 
PROOF: 
• Search makes "up" and "left" moves 

until it reaches the root (or −∞) 
• Expected number of "up" moves < num. of levels 

≤ O(lg n) (Lemma) 
• ⇒ w.h.p., number of moves is at most the number 


of times we need to flip a coin to get c lg n HEADs 
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Chernoff Bounds 


THEOREM (CHERNOFF): Let Y be a random 
variable representing the total number of 
heads (tails) in a series of m independent coin 
flips, where each flip has a probability p of 
coming up heads (tails). Then, for all r > 0, 

Pr[Y ≥ E[Y] + r] ≤ e-2r2/m
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Lemma 


LEMMA: For any c there is a constant d such 
that w.h.p. the number of heads in flipping 
d lg n fair coins is at least c lg n. 
PROOF: Let Y be the number of tails when 
flipping a fair coin d lg n times. p = ½. 
m = d lgn, so E[Y] = ½ m = ½ d lgn 
We want to bound the probability of ≤ c lg n 
heads = probability of ≥ d lg n – c lg n tails. 
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Lemma Proof (contd.) 

Pr[Y ≥ (d – c) lg n]= 
                     Pr[Y ≥ E[Y] + (½ d – c) lg n] 
Choose d = 3c   =>   r =  3clg n 
By Chernoff, probability of ≤  c lg n heads is 
         ≤  e 2 2-2r /m = e-2(3clg n) /8clg n= e-9/4clg n 

         ≤  e-clg n 

         ≤  2-clg n     (e > 2) 
             =  1/nc 
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Proof of theorem (finally!) 

THEOREM: With high probability, every search

in an n-element skip list costs O(lg n) 
event A: number of levels ≤ c lg n w.h.p. 
event B: number of moves until c lg n “up” moves

≤ d lg n w.h.p. 
A and B are not independent! 

Want to show A & B occurs w.h.p. to prove theorem 
Pr(A & B) = Pr(A + B) ≤ Pr(A) + Pr(B) (union bound)

 ≤ 

1/nc-1 + 1/nc 

= O(1/nc-1) 
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