
Lecture 6	 Randomized Algorithms Spring 2015

Lecture 6: Randomized Algorithms

•	 Check matrix multiplication

•	 Quicksort

Randomized or Probablistic Algorithms

What is a randomized algorithm?

•	 Algorithm that generates a random number r ∈ {1, ..., R} and makes decisions
based on r’s value.

•	 On the same input on different executions, a randomized algorithm may

–	 Run a different number of steps

–	 Produce a different output

Randomized algorithms can be broadly classified into two types- Monte Carlo and
Las Vegas.

Monte Carlo Las Vegas
runs in polynomial time always runs in expected polynomial time

output is correct with high probability output always correct

Matrix Product

C = A × B

Simple algorithm: O(n3) multiplications.
log2 7) = O(n2.81)Strassen: multiply two 2 × 2 matrices in 7 multiplications: O(n

2.376)
Coppersmith-Winograd: O(n

1

6.046J

Lecture 6 Randomized Algorithms Spring 2015

Matrix Product Checker

Given n × n matrices A, B, C, the goal is to check if A × B = C or not.
Question. Can we do better than carrying out the full multiplication?
We will see an O(n2) algorithm that:

• if A × B = C, then Pr[output=YES] = 1.

• if A × B .= C, then Pr[output=YES] ≤ 1
2

We will assume entries in matrices ∈ {0, 1} and also that the arithmetic is mod 2.

Frievald’s Algorithm

Choose a random binary vector r[1...n] such that Pr[ri = 1] = 1/2 independently for
r = 1, ..., n. The algorithm will output ’YES’ if A(Br) = Cr and ’NO’ otherwise.

Observation

The algorithm will take O(n2) time, since there are 3 matrix multiplications Br,
A(Br) and Cr of a n × n matrix by a n × 1 matrix.

Analysis of Correctness if AB = C

Claim. If AB = C, then Pr[ABr = Cr] ≥ 1/2.
Let D = AB − C. Our hypothesis is thus that D = 0. Clearly, there exists r

such that Dr 0. = Our goal is to show that there are many r such that Dr = 0.
Specifically, Pr[Dr = 0] ≥ 1/2 for randomly chosen r.

D = AB−C =
= 0 ⇒ ∃ i, j s.t. dij = 0. Fix vector v which is 0 in all coordinates
except for vj = 1. (Dv)i = dij = 0 implying Dv = 0. Take any r that can be chosen
by our algorithm. We are looking at the case where Dr = 0. Let

'r = r + v

' 'Since v is 0 everywhere except vj , r is the same as r exept r = (rj + vj) mod 2. j

Thus, Dr' = D(r + v) = 0 + Dv 0. We see that there is a 1 to 1 correspondence =
' '' ''between r and r' , as if r = r + V = r + V then r = r . This implies that

'number of r for which Dr' = 0 ≥ number of r for which Dr = 0

From this we conclude that Pr[Dr = 0] ≥ 1/2

2

6.046J

Lecture 6	 Randomized Algorithms Spring 2015

Quicksort

Divide and conquer algorithm but work mostly in the divide step rather than combine.
Sorts “in place” like insertion sort and unlike mergesort (which requires O(n) auxiliary
space).

Different variants:

•	 Basic: good in average case

•	 Median-based pivoting: uses median finding

• Random: good for all inputs in expectation (Las Vegas algorithm)

Steps of quicksort:

•	 Divide: pick a pivot element x in A, partition the array into sub-arrays L,
consisting of all elements < x, G consisting of all elements > x and E consisting
of all elements = x.

•	 Conquer: recursively sort subarrays L and G

•	 Combine: trivial

Basic Quicksort

Pivot around x = A[1] or A[n] (first or last element)

•	 Remove, in turn, each element y from A

•	 Insert y into L, E or G depending on the comparison with pivot x

•	 Each insertion and removal takes O(1) time

•	 Partition step takes O(n) time

•	 To do this in place: see CLRS p. 171

3

6.046J

Lecture 6 Randomized Algorithms Spring 2015

Basic Quicksort Analysis

If input is sorted or reverse sorted, we are partitioning around the min or max element
each time. This means one of L or G has n − 1 elements, and the other 0. This gives:

T (n) = T (0) + T (n − 1) + Θ(n)

= Θ(1) + T (n − 1) + Θ(n)

= Θ(n 2)

However, this algorithm does well on random inputs in practice.

Pivot Selection Using Median Finding

Can guarantee balanced L and G using rank/median selection algorithm that runs
in Θ(n) time. The first Θ(n) below is for the pivot selection and the second for the
partition step.

()n
T (n) = 2T +Θ(n) + Θ(n)

2
T (n) = Θ(n log n)

This algorithm is slow in practice and loses to mergesort.

Randomized Quicksort

x is chosen at random from array A (at each recursion, a random choice is made).
Expected time is O(n log n) for all input arrays A. See CLRS p.181-184 for the
analysis of this algorithm; we will analyze a variant of this.

“Paranoid” Quicksort

Repeat
choose pivot to be random element of A
perform Partition

Until
resulting partition is such that
|L| ≤ 3 |A| and |G| ≤ 3 |A|

4 4

Recurse on L and G

4

6.046J

Lecture 6	 Randomized Algorithms Spring 2015

“Paranoid” Quicksort Analysis

Let’s define a ”good pivot” and a ”bad pivot”­
Good pivot: sizes of L and G ≤ 3

4 n each
Bad pivot: one of L and G is ≤ 3

4 n each

bad pivots good pivots bad pivots

n
4

n
2

n
4

We see that a pivot is good with probability > 1/2.
Let T (n) be an upper bound on the expected running time on any array of n size.

T(n) comprises:

•	 time needed to sort left subarray

•	 time needed to sort right subarray

•	 the number of iterations to get a good call. Denote as c · n the cost of the
partition step

Expectations

2cn

(2cn)/4 3(2cn)/4

(2cn)/16 3(2cn)/16 9(2cn)/16

O(1) O(1)

T (n) ≤ maxn/4≤i≤3n/4(T (i) + T (n − i)) + E(#iterations) · cn

Now, since probability of good pivot >
2
1 ,

E(#iterations) ≤ 2

5

6.046J

Lecture 6 Randomized Algorithms Spring 2015

 ()n 3n
T (n) ≤ T + T + 2cn

4 4

We see in the figure that the height of the tree can be at most log
4

3

(2cn) no matter

what branch we follow to the bottom. At each level, we do a total of 2cn work. Thus,
expected runtime is T (n) = Θ(n log n)

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

