
Lecture 4 van Emde Boas  Spring 2015
 

Lecture 4: Divide and Conquer:
 
van Emde Boas Trees
 

• Series of Improved Data Structures 

• Insert, Successor 

• Delete 

• Space 

This lecture is based on personal communication with Michael Bender, 2001. 

Goal 

We want to maintain n elements in the range {0, 1, 2, . . . , u − 1} and perform Insert, 
Delete and Successor operations in O(log log u) time. 

• If n = nO(1) or n(log n)O(1)
, then we have O(log log n) time operations 

– Exponentially faster than Balanced Binary Search Trees 

– Cooler queries than hashing 

• Application: Network Routing Tables 

– u = Range of IP Addresses → port to send (u = 232 in IPv4) 

Where might the O(log log u) bound arise ? 

• Binary search over O(log u) elements 

• Recurrences   
log u 

– T(log u) = T 2 +O(1) 
√ 

– T(u) = T( u) +O(1) 

Improvements 

We will develop the van Emde Boas data structure by a series of improvements on 
a very simple data structure. 

1
 

6.046J



Lecture 4 van Emde Boas  Spring 2015
 

Bit Vector 

We maintain a vector V of size u such that V[x] = 1 if and only if x is in the set. 
Now, inserts and deletes can be performed by just flipping the corresponding bit 
in the vector. However, successor/predecessor requires us to traverse through the 
vector to find the next 1-bit. 

• Insert/Delete: O(1) 

• Successor/Predecessor: O(u) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 

Figure 1: Bit vector for u = 16. THe current set is {1, 9, 10, 15}. 

Split Universe into Clusters 
√ 

We can improve performance by splitting up the range {0, 1, 2, . . . , u − 1} into u√ √ 
clusters of size u. If  x = i u + j, then V[x] = V.Cluster[i][j]. 

√ 
low(x) = x mod u = j   x

high(x) = √ = i 
u√ 

index(i, j) = i u + j 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 

V.Cluster[0] V.Cluster[1] V.Cluster[2] V.Cluster[3] 

√ 
Figure 2: Bit vector (u = 16) split into 16 = 4 clusters of size 4. 

• Insert: 

– Set V.cluster[high(x)][low(x)] = 1 O(1) 
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– Mark cluster high(x) as non-empty	 O(1) 

•	 Successor: 
√ 

– Look within cluster high(x)	 O( u) 
√ 

– Else, find next non-empty cluster i	 O( u) 
√ 

– Find minimum entry j in that cluster	 O( u) 
√ 

– Return index(i, j)	 Total = O( u) 

Recurse 
√ 

The three operations in Successor are also Successor calls to vectors of size u. We  
can use recursion to speed things up. 

√	 √ •	 V.cluster[i] is a size- u van Emde Boas structure (∀ 0 ≤ i < u)
 
√
 • V.summary is a size- u van Emde Boas structure 

• V.summary[i] indicates whether V.cluster[i] is nonempty 

INSERT(V, x) 

1 Insert(V.cluster[high(x)], low[x]) 
2 Insert(V.summary, high[x]) 

So, we get the recurrence: 
√ 

T(u) = 2T( u) +O(1)   
log u

T'(log u) = 2T' +O(1)
2

=⇒ T(u) = T'(log u) = O(log u) 

SUCCESSOR(V, x) 

1 i = high(x) 
2 j = Successor(V.cluster[i], j) 
3 if j ==  ∞ 
4 i = Successor(V.summary, i) 
5 j = Successor(V.cluster[i], −∞) 
6 return index(i, j) 
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√ 
T(u) = 3T(	 u) +O(1)
 

log u

T ' (log u) = 3T ' +O(1)

2 

(log u) = O((log u)log 3) ≈ O((log u)1.585)=⇒ T(u) = T ' 

To obtain the O(log log u) running time, we need to reduce the number of re­
cursions to one. 

Maintain Min and Max 

We store the minimum and maximum entry in each structure. This gives an O(1) 
time overhead for each Insert operation. 

SUCCESSOR(V, x)
 

1 i = high(x)
 
2 if low(x) < V.cluster[i].max
 
3 j = Successor(V.cluster[i], low(x))
 
4 else i = Successor(V.summary, high(x))
 
5 j = V.cluster[i].min
 
6 return index(i, j)
 

√ 
T(u) = T( u) +O(1) 

=⇒ T(u) = O(log log u) 

Don’t store Min recursively 

The Successor call now needs to check for the min separately. 

if x < V.min : return V.min	 (1) 
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INSERT(V, x) 

1 if V.min == None 
2 V.min = V.max = x I O(1) time 
3 return 
4 if x < V.min 
5 swap(x ↔ V.min) 
6 if x > V.max 
7 V.max = x) 
8 if V.cluster[high(x) ==  None 
9 Insert(V.summary, high(x)) I First Call 

10 Insert(V.cluster[high(x)], low(x)) I Second Call 

If the first call is executed, the second call only takes O(1) time. So 

√ 
T(u) =  T( u) +  O(1) 

=⇒ T(u) =  O(log log u) 

DELETE(V, x) 

1 if x == V.min I Find new min 
2 i = V.summary.min 
3 if i = None 
4 V.min = V.max = None I O(1) time 
5 return 
6 V.min = index(i, V.cluster[i].min) I Unstore new min 
7 Delete(V.cluster[high(x)], low(x)) I First Call 
8 if V.cluster[high(x)].min == None 
9 Delete(V.summary, high(x)) I Second Call 

10 I Now we update V.max 
11 if x == V.max 
12 if V.summary.max = None 
13 else 
14 i = V.summary.max 
15 V.max = index(i, V.cluster[i].max) 

If the second call is executed, the first call only takes O(1) time. So 

√ 
T(u) =  T( u) +  O(1) 

=⇒ T(u) =  O(log log u) 
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Lower Bound [Patrascu & Thorup 2007] 

Even for static queries (no Insert/Delete) 

• Ω(log log u) time per query for u = n(log n)O(1) 

• O(n · poly(log n)) space 

Space Improvements 

We can improve from Θ(u) to O(n log log u). 

• Only create nonempty clusters 

– If V.min becomes None, deallocate V 

• Store V.cluster as a hashtable of nonempty clusters 

• Each insert may create a new structure Θ(log log u) times (each empty insert) 

– Can actually happen [Vladimir ˇ at]Cun´

• Charge pointer to structure (and associated hash table entry) to the structure 

This gives us O(n log log u) space (but randomized). 

Indirection 

We can further reduce to O(n) space. 

•	 Store vEB structure with n = O(log log u) using BST or even an array
 

=⇒ O(log log n) time once in base case
 

•	 We use O(n/ log log u) such structures (disjoint)
 

n
=⇒ O( · log log u) = O(n) space for small log log u 

• Larger structures “store” pointers to them 

n=⇒ O( · log log u) = O(n) space for large log log u 

• Details: Split/Merge small structures 
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