
Lecture 4 van Emde Boas Spring 2015

Lecture 4: Divide and Conquer:

van Emde Boas Trees

• Series of Improved Data Structures

• Insert, Successor

• Delete

• Space

This lecture is based on personal communication with Michael Bender, 2001.

Goal

We want to maintain n elements in the range {0, 1, 2, . . . , u − 1} and perform Insert,
Delete and Successor operations in O(log log u) time.

• If n = nO(1) or n(log n)O(1)
, then we have O(log log n) time operations

– Exponentially faster than Balanced Binary Search Trees

– Cooler queries than hashing

• Application: Network Routing Tables

– u = Range of IP Addresses → port to send (u = 232 in IPv4)

Where might the O(log log u) bound arise ?

• Binary search over O(log u) elements

• Recurrences
log u

– T(log u) = T 2 +O(1)
√

– T(u) = T(u) +O(1)

Improvements

We will develop the van Emde Boas data structure by a series of improvements on
a very simple data structure.

1

6.046J

Lecture 4 van Emde Boas Spring 2015

Bit Vector

We maintain a vector V of size u such that V[x] = 1 if and only if x is in the set.
Now, inserts and deletes can be performed by just flipping the corresponding bit
in the vector. However, successor/predecessor requires us to traverse through the
vector to find the next 1-bit.

• Insert/Delete: O(1)

• Successor/Predecessor: O(u)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

Figure 1: Bit vector for u = 16. THe current set is {1, 9, 10, 15}.

Split Universe into Clusters
√

We can improve performance by splitting up the range {0, 1, 2, . . . , u − 1} into u√ √
clusters of size u. If x = i u + j, then V[x] = V.Cluster[i][j].

√
low(x) = x mod u = j x

high(x) = √ = i
u√

index(i, j) = i u + j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1

V.Cluster[0] V.Cluster[1] V.Cluster[2] V.Cluster[3]

√
Figure 2: Bit vector (u = 16) split into 16 = 4 clusters of size 4.

• Insert:

– Set V.cluster[high(x)][low(x)] = 1 O(1)

2

6.046J

Lecture 4	 van Emde Boas Spring 2015

– Mark cluster high(x) as non-empty	 O(1)

•	 Successor:
√

– Look within cluster high(x)	 O(u)
√

– Else, find next non-empty cluster i	 O(u)
√

– Find minimum entry j in that cluster	 O(u)
√

– Return index(i, j)	 Total = O(u)

Recurse
√

The three operations in Successor are also Successor calls to vectors of size u. We
can use recursion to speed things up.

√	 √ •	 V.cluster[i] is a size- u van Emde Boas structure (∀ 0 ≤ i < u)

√
 • V.summary is a size- u van Emde Boas structure

• V.summary[i] indicates whether V.cluster[i] is nonempty

INSERT(V, x)

1 Insert(V.cluster[high(x)], low[x])
2 Insert(V.summary, high[x])

So, we get the recurrence:
√

T(u) = 2T(u) +O(1)
log u

T'(log u) = 2T' +O(1)
2

=⇒ T(u) = T'(log u) = O(log u)

SUCCESSOR(V, x)

1 i = high(x)
2 j = Successor(V.cluster[i], j)
3 if j == ∞
4 i = Successor(V.summary, i)
5 j = Successor(V.cluster[i], −∞)
6 return index(i, j)

3

6.046J

Lecture 4	 van Emde Boas Spring 2015

√
T(u) = 3T(u) +O(1)

log u

T ' (log u) = 3T ' +O(1)

2

(log u) = O((log u)log 3) ≈ O((log u)1.585)=⇒ T(u) = T '

To obtain the O(log log u) running time, we need to reduce the number of re­
cursions to one.

Maintain Min and Max

We store the minimum and maximum entry in each structure. This gives an O(1)
time overhead for each Insert operation.

SUCCESSOR(V, x)

1 i = high(x)

2 if low(x) < V.cluster[i].max

3 j = Successor(V.cluster[i], low(x))

4 else i = Successor(V.summary, high(x))

5 j = V.cluster[i].min

6 return index(i, j)

√
T(u) = T(u) +O(1)

=⇒ T(u) = O(log log u)

Don’t store Min recursively

The Successor call now needs to check for the min separately.

if x < V.min : return V.min	 (1)

4

6.046J

()

Lecture 4 van Emde Boas Spring 2015

INSERT(V, x)

1 if V.min == None
2 V.min = V.max = x I O(1) time
3 return
4 if x < V.min
5 swap(x ↔ V.min)
6 if x > V.max
7 V.max = x)
8 if V.cluster[high(x) == None
9 Insert(V.summary, high(x)) I First Call

10 Insert(V.cluster[high(x)], low(x)) I Second Call

If the first call is executed, the second call only takes O(1) time. So

√
T(u) = T(u) + O(1)

=⇒ T(u) = O(log log u)

DELETE(V, x)

1 if x == V.min I Find new min
2 i = V.summary.min
3 if i = None
4 V.min = V.max = None I O(1) time
5 return
6 V.min = index(i, V.cluster[i].min) I Unstore new min
7 Delete(V.cluster[high(x)], low(x)) I First Call
8 if V.cluster[high(x)].min == None
9 Delete(V.summary, high(x)) I Second Call

10 I Now we update V.max
11 if x == V.max
12 if V.summary.max = None
13 else
14 i = V.summary.max
15 V.max = index(i, V.cluster[i].max)

If the second call is executed, the first call only takes O(1) time. So

√
T(u) = T(u) + O(1)

=⇒ T(u) = O(log log u)

5

6.046J

Lecture 4	 van Emde Boas Spring 2015

Lower Bound [Patrascu & Thorup 2007]

Even for static queries (no Insert/Delete)

• Ω(log log u) time per query for u = n(log n)O(1)

• O(n · poly(log n)) space

Space Improvements

We can improve from Θ(u) to O(n log log u).

• Only create nonempty clusters

– If V.min becomes None, deallocate V

• Store V.cluster as a hashtable of nonempty clusters

• Each insert may create a new structure Θ(log log u) times (each empty insert)

– Can actually happen [Vladimir ˇ at]Cun´

• Charge pointer to structure (and associated hash table entry) to the structure

This gives us O(n log log u) space (but randomized).

Indirection

We can further reduce to O(n) space.

•	 Store vEB structure with n = O(log log u) using BST or even an array

=⇒ O(log log n) time once in base case

•	 We use O(n/ log log u) such structures (disjoint)

n
=⇒ O(· log log u) = O(n) space for small log log u

• Larger structures “store” pointers to them

n=⇒ O(· log log u) = O(n) space for large log log u

• Details: Split/Merge small structures

6

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

