Lecture 4 van Emde Boas 6.046] Spring 2015

Lecture 4: Divide and Conquer:
van Emde Boas Trees

e Series of Improved Data Structures
e Insert, Successor
e Delete

e Space

This lecture is based on personal communication with Michael Bender, 2001.

Goal

We want to maintain 7 elements in the range {0, 1,2,...,u — 1} and perform Insert,
Delete and Successor operations in O(loglogu) time.

)O

o Ifn =n°W or n18M™ then we have O(loglogn) time operations

— Exponentially faster than Balanced Binary Search Trees

- Cooler queries than hashing
e Application: Network Routing Tables

- u = Range of IP Addresses — port to send (u = 2% in IPv4)

Where might the O(loglog 1) bound arise ?
e Binary search over O(logu) elements
e Recurrences
- T(ogu) =T (*%*) + 0(1)
- T(u) = T(ya) + O(1)

Improvements

We will develop the van Emde Boas data structure by a series of improvements on
a very simple data structure.

Lecture 4 van Emde Boas 6.046J Spring 2015

Bit Vector

We maintain a vector V of size u such that V[x] = 1 if and only if x is in the set.
Now, inserts and deletes can be performed by just flipping the corresponding bit
in the vector. However, successor/predecessor requires us to traverse through the
vector to find the next 1-bit.

e Insert/Delete: O(1)

e Successor/Predecessor: O(u)

Figure 1: Bit vector for u = 16. THe current set is {1,9,10,15}.

Split Universe into Clusters

We can improve performance by splitting up the range {0,1,2,...,u — 1} into y/u
clusters of size /u. If x = i\/u + j, then V[x] = V.Cluster][i][j].

low(x) = x mod vu = j

high(x) = L%J —i

index(i,j) = iv/u+j

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
IO 1 0 OIO 0 0 OIO-OIO 0 0 1|

V.Cluster|0] V.Cluster[1] V.Cluster|2] V.Cluster|3]

Figure 2: Bit vector (1 = 16) split into v/16 = 4 clusters of size 4.

e Insert:

— Set V.cluster[high(x)][low(x)] =1 O(1)

2

Lecture 4 van Emde Boas 6.046] Spring 2015

— Mark cluster high(x) as non-empty O(1)

e Successor:

— Look within cluster high(x) O(Vu)

- Else, find next non-empty cluster i O(Vu)

— Find minimum entry j in that cluster O(Vu)

— Return index(i, j) Total = O(y/u)
Recurse

The three operations in Successor are also Successor calls to vectors of size /u. We
can use recursion to speed things up.

e V.clusterl[i] is a size-y/u van Emde Boas structure (V 0 < i < \/u)
e V.summary is a size-y/u van Emde Boas structure

e V.summary[i] indicates whether V.cluster[i] is nonempty

INSERT(V, x)

1 Insert(V.cluster[high(x)], low]x])
2 Insert(V.summary, high[x])

So, we get the recurrence:

T(u) = 2T(v/) + O(1)
T'(log u) = 2T’ (k’%”) +0(1)

= T(u) = T'(logu) = O(logu)

SUCCESSOR(V, x)

1 i = high(x)

2 j = Successor(V .clusterli],)

3 ifj==oo

4 i = Successor(V.summary, i)

5 j = Successor(V .cluster|i], —o0)
6 return index(i,)

Lecture 4 van Emde Boas 6.046] Spring 2015

T(u) =3T(vVu)+0O(1)

T'(logu) = 3T’ (%) +O(1)

— T(u) = T'(logu) = O((log u)'°8%) ~ O((log u)'°*)

To obtain the O(loglogu) running time, we need to reduce the number of re-
cursions to one.

Maintain Min and Max

We store the minimum and maximum entry in each structure. This gives an O(1)
time overhead for each Insert operation.

SUCCESSOR(V, x)

1 i = high(x)

2 if low(x) < V.cluster[i].max

3 j = Successor(V .cluster|i], low(x))
4 elsei = Successor(V.summary, high(x))
5 j = V.cluster|i].min
6 return index(i,|)

Don’t store Min recursively

The Successor call now needs to check for the min separately.

if x < V.min : return V.min (1)

Lecture 4 van Emde Boas 6.046] Spring 2015

INSERT(V, x)
1 if V.min == None
2 V.min = V.max = x > O(1) time
3 return
4 if x < V.min
5 swap(x <> V.min)
6 if x > V.max
7 V.max = x)
8 if V.cluster[high(x) == None
9 Insert(V.summary, high(x)) > First Call
10 Insert(V.cluster[high(x)], low(x)) > Second Call
If the first call is executed, the second call only takes O(1) time. So
T(u) = T(Vu) + O(1)
— T(u) = O(loglogu)
DELETE(V, x)
1 ifx == V.min > Find new min
2 i = V.summary.min
3 if i = None
4 V.min = V.max = None > O(1) time
5 return
6 V.min = index (i, V.cluster|i].min) > Unstore new min
7 Delete(V.cluster[high(x)], low(x)) > First Call
8 if V.cluster[high(x)].min == None
9 Delete(V .summary, high(x)) > Second Call
10 > Now we update V.max
11 if x == V.max
12 if V.summary.max = None
13 else
14 i = V.summary.max
15 V.max = index(i, V.cluster[i|.max)

If the second call is executed, the first call only takes O(1) time. So

T(u) = T(vu) +O(1)
= T(u) = O(loglogu)

Lecture 4 van Emde Boas 6.046] Spring 2015

Lower Bound [Patrascu & Thorup 2007]

Even for static queries (no Insert/Delete)
e O(loglogu) time per query for u = p(logm)

e O(n- poly(logn)) space

Space Improvements

We can improve from @(u) to O(nloglogu).
e Only create nonempty clusters
— If V.min becomes None, deallocate V
e Store V.cluster as a hashtable of nonempty clusters
e Each insert may create a new structure ©(loglog 1) times (each empty insert)
— Can actually happen [Vladimir Cunt]
e Charge pointer to structure (and associated hash table entry) to the structure

This gives us O(nloglogu) space (but randomized).

Indirection
We can further reduce to O(n) space.
e Store VEB structure with n = O(loglog u) using BST or even an array
—> O(loglogn) time once in base case
e We use O(n/ loglogu) such structures (disjoint)

= O(iz1t - loglogu) = O(n) space for small

log log u

e Larger structures “store” pointers to them

— O(pglogu - loglogu) = O(n) space for large

e Details: Split/Merge small structures

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

