
Lecture 3	 Fast Fourier Transform Spring 2015

Lecture 3: Divide and Conquer:
Fast Fourier Transform

•	 Polynomial Operations vs. Representations

•	 Divide and Conquer Algorithm

•	 Collapsing Samples / Roots of Unity

•	 FFT, IFFT, and Polynomial Multiplication

Polynomial operations and representation
A polynomial A(x) can be written in the following forms:

2	 n−1A(x) = a0 + a1x+ a2x + · · ·+ an−1x
n1

k = akx
k=0

= (a0, a1, a2, . . . , an−1) (coefficient vector)

The degree of A is n− 1.

Operations on polynomials

There are three primary operations for polynomials.

1.	 Evaluation: Given a polynomial A(x) and a number x0, compute A(x0). This
can be done in O(n) time using O(n) arithmetic operations via Horner’s rule.

•	 Horner’s Rule: A(x) = a0 +x(a1 + x(a2 + · · · x(an−1) · · ·)). At each step,
a sum is evaluated, then multiplied by x, before beginning the next step.
Thus O(n) multiplications and O(n) additions are required.

2.	 Addition: Given two polynomials A(x) and B(x), compute C(x) = A(x) +
B(x) (∀x). This takes O(n) time using basic arithmetic, because ck = ak + bk.

1

6.046J

Lecture 3	 Fast Fourier Transform Spring 2015

3.	 Multiplication: Given two polynomials A(x) and B(x), compute C(x) = kA(x)·B(x) (∀x). Then ck = j=0 aj bk−j for 0 ≤ k ≤ 2(n−1), because the degree
of the resulting polynomial is twice that of A or B. This multiplication is then
equivalent to a convolution of the vectors A and reverse(B). The convolution
is the inner product of all relative shifts, an operation also useful for smoothing
etc. in digital signal processing.

•	 Naive polynomial multiplication takes O(n2).

•	 O(nlg 3) or even O(n1+ε) (∀ε > 0) is possible via Strassen-like divide-and­
conquer tricks.

•	 Today, we will compute the product in O(n lg n) time via Fast Fourier
Transform!

Representations of polynomials

First, consider the different representations of polynomials, and the time necessary
to complete operations based on the representation.

There are 3 main representations to consider.

1. Coefficient vector with a monomial basis

2. Roots and a scale term

•	 A(x) = (x− r0) · (x− r1) · · · · · (x− rn−1) · c
•	 However, it is impossible to find exact roots with only basic arithmetic
operations and kth root operations. Furthermore, addition is extremely
hard with this representation, or even impossible. Multiplication simply
requires roots to be concatenated, and evaluation can be completed in
O(n).

3. Samples: (x0, y0), (x1, y1), . . . , (xn−1, yn−1) with A(xi) = yi (∀i) and each xi

is distinct. These samples uniquely determine a degree n − 1 polynomial A,
according to the Lagrange and Fundamental Theorem of Algebra. Addition
and multiplication can be computed by adding and multiplying the yi terms,
assuming that the xi’s match. However, evaluation requires interpolation.

The runtimes for the representations and the operations is described in the table
below, with algorithms for the operations versus the representations.

2

6.046J

Lecture 3 Fast Fourier Transform 6.046J Spring 2015

Algorithms vs. Representations
Coefficients Roots Samples

Evaluation O(n) O(n) O(n2)
Addition O(n) ∞ O(n)
Multiplication O(n2) O(n) O(n)

We combine the best of each representation by converting between coefficients and
samples in O(n lg n) time.

How? Consider the polynomial in matrix form.
 ⎡
1 x n

0 x2 1
0 · · · x 0

− ⎤⎡ a0
 2 n 1

⎤

⎡
y0

⎤
 ⎢ 1 x1 x1 · · · x 1

−

⎥ ⎢ a1
⎥ ⎢ y ⎢ 1

⎥

V · A =
⎢ 1 x2 x2

2 · · · x n−1
⎢⎢

2

⎥⎢⎥
 a2

⎥ ⎢ ⎥

⎥
 =

⎢
 y
⎥

⎢ 2 ⎢

⎥ ⎢ ⎥
 . .

⎢
. . ⎢ . .

⎥
.

⎥⎢ ⎥ ⎢ ⎥⎥⎢ ⎥ ⎢⎥ ⎢ . ⎥ ⎢ .
⎥⎥ ⎣

 1 xn n−1 · · · −1 x2 x n 1
n
−
⎦⎣

a

⎦ ⎣ ⎦
−1 n−1 yn−1

where V is the Vandermonde matrix with entries vjk = xk
j .

Then we can convert between coefficients and samples using the matrix vector
product V · A, which is equivalent to evaluation. This takes O(n2).

Similarly, we can samples to coefficients by solving V \Y (in MATLAB ®notation).
This takes O(n3) via Gaussian elimination, or O(n2) to compute A = V −1 · Y , if V −1

is precomputed.
To do better than Θ(n2) when converting between coefficients and samples, and

vice versa, we need to choose special values for x0, x1, . . . , xn 1. Thus far, we have −
only made the assumption that the xi values are distinct.

Divide and Conquer Algorithm
We can formulate polynomial multiplication as a divide and conquer algorithm with
the following steps for a polynomial A(x) ∀ x ∈ X.

1. Divide the polynomial A into its even and odd coefficients:

1 n
2 − 1

∑1

 k Aeven(x) = a2kx = (a0, a2, a4, . . .
k=0

)

l n −1
2 J

A k
odd(x) =

∑
a2k+1x = (a1, a3, a5, . . .

k=0

)

3

Lecture 3 Fast Fourier Transform Spring 2015

2. Recursively conquer Aeven(y) for y ∈ X2 and Aodd(y) for y ∈ X2, where X2 =
{x2 | x ∈ X}.

3. Combine the terms. A(x) = Aeven(x
2) + x · Aodd(x

2) for x ∈ X.

However, the recurrences for this algorithm is
()n

T (n, |X|) = 2 · T , |X| + O(n+ |X|)
2

= O(n 2)

which is no better than before.
We can do better if X is collapsing : either |X| = 1 (base case), or |X2| = |X| and

2
X2 is (recursively) collapsing. Then the recurrence is of the form

()n
T (n) = 2 · T + O(n) = O(n lg n).

2

Roots of Unity
Collapsing sets can be constructed via square roots. Each of the following collapsing
sets is computing by taking all square roots of the previous set.

1. {1}

2. {1,−1}

3. {1,−1, i,−i}
√ √

4. {1,−1,± 2 (1 + i),± 2 (−1 + i)}, which lie on a unit circle
2 2

We can repeat this process and make our set larger and larger by finding more and
more points on this circle. These points are called the nth roots of unity. Formally,
the nth roots of unity are n x’s such that xn = 1. These points are uniformly spaced
around the unit circle in the complex plane (including 1). These points are of the
form (cos θ, sin θ) = cos θ+i sin θ = eiθ by Euler’s Formula, for θ = 0, 1 τ, 2 τ, . . . , n−1 τ

n n n
(where τ = 2π).

iθ)2 i(2θ)The nth roots of unity where n = 2£ form a collapsing set, because (e = e =
i(2θ mod τ) n e . Therefore the even nth roots of unity are equivalent to the

2 nd roots of
unity.

4

6.046J

Lecture 3 Fast Fourier Transform Spring 2015

FFT, IFFT, and Polynomial Multiplication
We can take advantage of the nth roots of unity to improve the runtime of our
polynomial multiplication algorithm. The basis for the algorithm is called the Discrete
Fourier Transform (DFT).

The DFT allows the transformation between coefficients and samples, computing
A → A∗ = V · A for xk = eiτk/n where n = 2£, where A is the set of coefficients and
A∗ ∗ n−1 iτjk/n is the resulting samples. The individual terms a = e · aj .j j=0

Fast Fourier Transform (FFT)

The FFT algorithm is an O(n lg n) divide and conquer algorithm for DFT, used by
Gauss circa 1805, and popularized by Cooley and Turkey and 1965. Gauss used the
algorithm to determine periodic asteroid orbits, while Cooley and Turkey used it to
detect Soviet nuclear tests from offshore readings.

A practical implementation of FFT is FFTW, which was described by Frigo and
Johnson at MIT. The algorithm is often implemented directly in hardware, for fixed
n.

Inverse Discrete Fourier Transform

The Inverse Discrete Fourier Transform is an algorithm to return the coefficients
of a polynomial from the multiplied samples. The transformation is of the form
A∗ → V −1 · A∗ = A.

In order to compute this, we need to find V −1 , which in fact has a very nice
structure.

¯ ¯Claim 1. V −1 =
n
1 V , where V is the complex conjugate of V . 1

1Recall the complex conjugate of p + qi is p − qi.

5

6.046J

∑

Lecture 3 Fast Fourier Transform Spring 2015

Proof. We claim that P = V · V̄ = nI:

¯pjk = (row j of V) · (col. k of V)
n−1

= eijτm/neikτm/n

m=0
n−1

ijτm/n −ikτm/n = e e
m=0
n−1

i(j−k)τm/n = e
m=0

n−1Now if j = k, pjk = m=0 = n. Otherwise it forms a geometric series.

n−1
i(j−k)τ/n)m pjk = = (e

m=0
iτ(j−k)/n)n − 1(e

=
eiτ (j−k)/n − 1

= 0

because eiτ = 1. Thus V −1 =
n
1 V̄ , because V · V̄ = nI.

This claim says that the Inverse Discrete Fourier Transform is equivalent to the
ikτ/n Discrete Fourier Transform, but changing xk from e to its complex conjugate

e−ikτ/n, and dividing the resulting vector by n. The algorithm for IFFT is analogous
to that for FFT, and the result is an O(n lg n) algorithm for IDFT.

Fast Polynomial Multiplication

In order to compute the product of two polynomials A and B, we can perform the
following steps.

1. Compute A∗ = FFT (A) and B∗ = FFT (B), which converts both A and B
from coefficient vectors to a sample representation.

2. Compute C∗ = A∗ · B∗ in sample representation in linear time by calculating
C∗ = A∗ · B∗ (∀k).k k k

3. Compute C = IFFT(C∗), which is a vector representation of our final solution.

6

6.046J

∑
∑
∑

∑
∑

Lecture 3 Fast Fourier Transform Spring 2015

Applications

Fourier (frequency) space many applications. The polynomial A∗ = FFT (A) is com­

plex, and the amplitude |a ∗| represents the amplitude of the frequency-k signal, while k

arg(ak
∗) (the angle of the 2D vector) represents the phase shift of that signal. For ex­

ample, this perspective is particularly useful for audio processing, as used by Adobe
Audition, Audacity, etc.:

• High-pass filters zero out high frequencies

• Low-pass filters zero out low frequencies

• Pitch shifts shift the frequency vector

• Used in MP3 compression, etc.

7

6.046J

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

