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Lecture 3: Divide and Conquer:  
Fast Fourier Transform  

•	 Polynomial Operations vs. Representations 

•	 Divide and Conquer Algorithm 

•	 Collapsing Samples / Roots of Unity 

•	 FFT, IFFT, and Polynomial Multiplication 

Polynomial operations and representation 
A polynomial A(x) can be written in the following forms: 

2	 n−1A(x) =  a0 + a1x+ a2x + · · ·+ an−1x 
n1 

k = akx 
k=0 

= (a0, a1, a2, . . . , an−1) (coefficient vector) 

The degree of A is n− 1. 

Operations on polynomials 

There are three primary operations for polynomials. 

1.	 Evaluation: Given a polynomial A(x) and a number x0, compute A(x0). This 
can be done in O(n) time using O(n) arithmetic operations via Horner’s rule. 

•	 Horner’s Rule: A(x) =  a0 +x(a1 + x(a2 + · · · x(an−1) · · · )). At each step, 
a sum is evaluated, then multiplied by x, before beginning the next step. 
Thus O(n) multiplications and O(n) additions are required. 

2.	 Addition: Given two polynomials A(x) and  B(x), compute C(x) =  A(x) +  
B(x) (∀x). This takes O(n) time using basic arithmetic, because ck = ak + bk. 
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3.	 Multiplication: Given two polynomials A(x) and  B(x), compute C(x) =   kA(x)·B(x) (∀x). Then ck = j=0 aj bk−j for 0 ≤ k ≤ 2(n−1), because the degree 
of the resulting polynomial is twice that of A or B. This multiplication is then 
equivalent to a convolution of the vectors A and reverse(B). The convolution 
is the inner product of all relative shifts, an operation also useful for smoothing 
etc. in digital signal processing. 

•	 Naive polynomial multiplication takes O(n2). 

•	 O(nlg 3) or even  O(n1+ε) (∀ε >  0) is possible via Strassen-like divide-and­
conquer tricks. 

•	 Today, we will compute the product in O(n lg n) time  via Fast Fourier  
Transform! 

Representations of polynomials 

First, consider the different representations of polynomials, and the time necessary 
to complete operations based on the representation. 

There are 3 main representations to consider. 

1. Coefficient vector with a monomial basis 

2. Roots and a scale term 

•	 A(x) = (x− r0) · (x− r1) · · · · · (x− rn−1) · c 
•	 However, it is impossible to find exact roots with only basic arithmetic 
operations and kth root operations. Furthermore, addition is extremely 
hard with this representation, or even impossible. Multiplication simply 
requires roots to be concatenated, and evaluation can be completed in 
O(n). 

3. Samples: (x0, y0), (x1, y1),  . . . ,  (xn−1, yn−1) with  A(xi) =  yi (∀i) and  each  xi 

is distinct. These samples uniquely determine a degree n − 1 polynomial A, 
according to the Lagrange and Fundamental Theorem of Algebra. Addition 
and multiplication can be computed by adding and multiplying the yi terms, 
assuming that the xi’s match. However, evaluation requires interpolation. 

The runtimes for the representations and the operations is described in the table 
below, with algorithms for the operations versus the representations. 
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Algorithms vs. Representations  
Coefficients Roots Samples  

Evaluation O(n) O(n) O(n2) 
Addition O(n) ∞ O(n) 
Multiplication O(n2) O(n) O(n) 

We combine the best of each representation by converting between coefficients and 
samples in O(n lg n) time. 

How? Consider the polynomial in matrix form. 
 ⎡
1 x n

0 x2 1      
0 · · ·  x 0 

− ⎤⎡ a0 
 2 n 1   

⎤
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y0 
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where V is the Vandermonde matrix with entries vjk = xk 
j . 

Then we can convert between coefficients and samples using the matrix vector 
product V · A, which is equivalent to evaluation. This takes O(n2). 

Similarly, we can samples to coefficients by solving V \Y (in MATLAB ®notation). 
This takes O(n3) via Gaussian elimination, or O(n2) to compute A = V −1 · Y , if V −1 

is precomputed. 
To do better than Θ(n2) when converting between coefficients and samples, and 

vice versa, we need to choose special values for x0, x1, . . . , xn 1.  Thus far,  we have  −
only made the assumption that the xi values are distinct. 

Divide and Conquer Algorithm 
We can formulate polynomial multiplication as a divide and conquer algorithm with 
the following steps for a polynomial A(x) ∀ x ∈ X. 

1. Divide the polynomial A into its even and odd coefficients: 

1 n 
2 − 1

 
∑1 

 k Aeven(x) = a2kx = (a0, a2, a4, . . .
k=0 

)

l n −1
2 J

A k 
odd(x) =  

∑ 
a2k+1x = (a1, a3, a5, . . .

k=0 

)
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2. Recursively conquer Aeven(y) for  y ∈ X2 and Aodd(y) for  y ∈ X2, where  X2 = 
{x2 | x ∈ X}. 

3. Combine the terms. A(x) =  Aeven(x
2) +  x · Aodd(x

2) for  x ∈ X. 

However, the recurrences for this algorithm is 
( )n 

T (n, |X|) = 2  · T , |X| + O(n+ |X|)
2 

= O(n 2) 

which is no better than before. 
We can do better if X is collapsing : either |X| = 1 (base case), or |X2| = |X| and

2 
X2 is (recursively) collapsing. Then the recurrence is of the form 

( )n 
T (n) = 2  · T + O(n) =  O(n lg n). 

2 

Roots of Unity 
Collapsing sets can be constructed via square roots. Each of the following collapsing 
sets is computing by taking all square roots of the previous set. 

1. {1} 

2. {1,−1} 

3. {1,−1, i,−i}
√ √ 

4. {1,−1,± 2 (1 + i),± 2 (−1 +  i)}, which lie on a unit circle 
2 2 

We can repeat this process and make our set larger and larger by finding more and 
more points on this circle. These points are called the nth roots of unity. Formally, 
the nth roots of unity are n x’s such that xn = 1. These points are uniformly spaced 
around the unit circle in the complex plane (including 1). These points are of the 
form (cos θ, sin θ) = cos  θ+i sin θ = eiθ by Euler’s Formula, for θ = 0, 1 τ, 2 τ, . . . , n−1 τ 

n n n 
(where τ = 2π). 

iθ)2 i(2θ)The nth roots of unity where n = 2£ form a collapsing set, because (e = e = 
i(2θ mod τ ) n e . Therefore the even nth roots of unity are equivalent to the 

2 nd roots of 
unity. 
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FFT, IFFT, and Polynomial Multiplication 
We can take advantage of the nth roots of unity to improve the runtime of our 
polynomial multiplication algorithm. The basis for the algorithm is called the Discrete 
Fourier Transform (DFT). 

The DFT allows the transformation between coefficients and samples, computing 
A → A∗ = V · A for xk = eiτk/n where n = 2£, where A is the set of coefficients and 
A∗ ∗ n−1 iτjk/n is the resulting samples. The individual terms a = e · aj .j j=0 

Fast Fourier Transform (FFT) 

The FFT algorithm is an O(n lg n) divide and conquer algorithm for DFT, used by 
Gauss circa 1805, and popularized by Cooley and Turkey and 1965. Gauss used the 
algorithm to determine periodic asteroid orbits, while Cooley and Turkey used it to 
detect Soviet nuclear tests from offshore readings. 

A practical implementation of FFT is FFTW, which was described by Frigo and 
Johnson at MIT. The algorithm is often implemented directly in hardware, for fixed 
n. 

Inverse Discrete Fourier Transform 

The Inverse Discrete Fourier Transform is an algorithm to return the coefficients 
of a polynomial from the multiplied samples. The transformation is of the form 
A∗ → V −1 · A∗ = A. 

In order to compute this, we need to find V −1 , which in fact has a very nice 
structure. 

¯ ¯Claim 1. V −1 = 
n 
1 V , where  V is the complex conjugate of V . 1 

1Recall the complex conjugate of p + qi is p − qi. 
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Proof. We claim that P = V · V̄ = nI: 

¯pjk = (row j of V ) · (col. k of V ) 
n−1 

= eijτm/neikτm/n 

m=0 
n−1 

ijτm/n −ikτm/n = e e 
m=0 
n−1 

i(j−k)τm/n  = e 
m=0 

n−1Now if j = k, pjk = m=0 = n. Otherwise it forms a geometric series. 

n−1 
i(j−k)τ/n)m pjk = =  (e 

m=0 
iτ(j−k)/n)n − 1(e

= 
eiτ (j−k)/n − 1 

= 0  

because eiτ = 1.  Thus  V −1 = 
n 
1 V̄ , because  V · V̄ = nI. 

This claim says that the Inverse Discrete Fourier Transform is equivalent to the 
ikτ/n Discrete Fourier Transform, but changing xk from e to its complex conjugate 

e−ikτ/n, and dividing the resulting vector by n. The algorithm for IFFT is analogous 
to that for FFT, and the result is an O(n lg n) algorithm for IDFT. 

Fast Polynomial Multiplication 

In order to compute the product of two polynomials A and B, we  can  perform  the  
following steps. 

1. Compute A∗ = FFT (A) and  B∗ = FFT (B), which converts both A and B 
from coefficient vectors to a sample representation. 

2. Compute C∗ = A∗ · B∗ in sample representation in linear time by calculating 
C∗ = A∗ · B∗ (∀k).k k k 

3. Compute C = IFFT(C∗), which is a vector representation of our final solution. 
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Applications 

Fourier (frequency) space many applications. The polynomial A∗ = FFT (A) is com­

plex, and the amplitude |a ∗| represents the amplitude of the frequency-k signal, while k

arg(ak
∗ ) (the angle of the 2D vector) represents the phase shift of that signal. For ex­

ample, this perspective is particularly useful for audio processing, as used by Adobe 
Audition, Audacity, etc.: 

• High-pass filters zero out high frequencies 

• Low-pass filters zero out low frequencies 

• Pitch shifts shift the frequency vector 

• Used in MP3 compression, etc. 
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