
Lecture 20

Sublinear-Time Algorithms
Supplemental reading in CLRS: None

If we settle for approximations, we can sometimes get much more efficient algorithms. In Lecture 18,
we saw polynomial-time approximations to a few NP-hard problems. In what follows, we will concern
ourselves with sublinear-time (that is, o(n)-time) approximation algorithms to problems whose exact
solutions require at least linear time. We will see two examples:

1. Estimating the number of connected components of a graph G

2. Estimating the size of a minimum spanning tree of a graph G, given that all of G’s edge weights
are integers between 1 and z for some given constant z.1

20.1 Estimating the Number of Connected Components

In this section we exhibit a polynomial-time approximation scheme for counting the connected com-
ponents of a graph. Given a graph G (in adjacency-list format) with n vertices and parameters
ε,δ> 0, we exhibit a randomized approximation algorithm which, with probability 1−δ, provides an
additive εn-approximation. That is,

Pr
[∣∣∣∣(output of

algorithm

)
−

(
correct number of

connected components

)∣∣∣∣> εn]
≤ δ. (20.1)

The running time of the algorithm is Poly(1/ε, lg(1/δ)).2

Given a vertex v, let mv denote the number of vertices in v’s connected component. Take a
moment to convince yourself of the following lemma:

Lemma 20.1. The number of connected components in G is

∑
v∈V

1
mv

.

1 The archaic Greek letter z (digamma) stood for the sound /w/. Although digamma fell out of use by the time of
Classical Greek, it is still occasionally used in Greek numerals (which are used in Greece in approximately the same way
that we use Roman numerals) to represent the number 6.

2 This notation means that the running time is polynomial in 1/ε and lg(1/δ); i.e., there exist positive constants r1, r2
such that the running time of the algorithm is O

((
1
ε

)r1
(
lg 1

δ

)r2
)
.

The idea of the algorithm is to approximate mv by a quantity m̃v which can be computed in constant
time. Then, for a set K of k randomly chosen vertices, we have(

number of connected
components

)
= ∑

v∈V

1
mv

≈ ∑
v∈V

1
m̃v

≈ n
k

∑
v∈K

1
m̃v

.

Algorithm: APPROX-#CC(G,ε,δ)

1 For some k =Θ
(

1
ε2 lg 1

δ

)
, pick k vertices v1, . . . ,vk at random

2 for i ← 1 to k do
3 Set

m̃vi ←min
{

mvi ,
2
ε

}
B computed using breadth-first search

4 return the value of
n
k

k∑
i=1

1
m̃vi

The key line to examine is line 3.

Exercise 20.1.

(i) The running time of a breadth-first search depends on the size of the graph. So how can there
be a bound on the running time of line 3 that doesn’t depend on n?

(ii) What is the running time of line 3? Show that the total running time of the algorithm is

O
(

1
ε2 k

)
=O

(
1
ε4 lg 1

δ

)
.

20.1.1 Correctness

We will prove (20.1) in two steps. First we will prove∣∣∣∣∣ ∑
v∈V

1
m̃v

− ∑
v∈V

1
mv

∣∣∣∣∣ ≤ εn
2

; (20.2)

then we will prove

Pr

[∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
m̃v

∣∣∣∣∣ ≥ εn
2

]
≤ δ. (20.3)

Combining these two, we obtain∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
mv

∣∣∣∣∣
≤

∣∣∣∣∣n
k

k∑
i=1

1
m̃vi

− ∑
v∈V

1
m̃v

∣∣∣∣∣ +
∣∣∣∣∣ ∑
v∈V

1
m̃v

− ∑
v∈V

1
mv

∣∣∣∣∣ ,

and with probability 1−δ,

· · · ≤ εn
2

+ εn
2

= εn,

which is (20.1).

Lec 20 – pg. 2 of 6

Proof of (20.2). This follows from the fact that

0 ≤ 1
m̃v

− 1
mv

< 1
m̃v

≤ 1(2
ε

) = ε

2

for each v ∈V .

Proof of (20.3). We use Hoeffding’s inequality, a relative of the Chernoff bound which is stated as
follows. Given independent real-valued random variables X1, . . . , Xk, let Y = 1

k
∑k

i=1 X i. Suppose
a,b ∈R are constants such that always3 a ≤ X i ≤ b for each i. Then Hoeffding’s inequality states that
for any η> 0, we have

Pr
[∣∣∣Y −E [Y]

∣∣∣≥ η] ≤ 2exp
(−2kη2

(b−a)2

)
.

We take X i = 1
m̃vi

, which gives E [Y]= 1
n

∑
v∈V

1
m̃v

; we take a = 0 and b = 1 and η= ε/2. Then Hoeffding’s
equality becomes

Pr

[∣∣∣∣∣1
k

k∑
i=1

1
m̃vi

− 1
n

∑
v∈V

1
m̃v

∣∣∣∣∣ ≥ ε

2

]
≤ 2exp

(
−2k

(
ε2

4

))
.

Thus, for a suitable k =Θ
(

lg(1/δ)
ε2

)
(namely, k = 2ln(2/δ)

ε2), we have

· · · ≤ 2exp
(− ln 2

δ

) = δ.

This is equivalent to (20.3).

20.2 Estimating the Size of a Minimum Spanning Tree

In this section, we exhibit an algorithm which solves the following problem:

Input: An undirected weighted graph G = (V ,E,w) with n vertices

all edge weights are integers in the set {1, . . . ,z}, where z≥ 2 is a given parameter
all vertices have degree at most d
given in adjacency-list format

Parameters ε,δ> 0

Output: A number t such that, with probability at least 1−δ,

(1−ε)w∗ ≤ t ≤ (1+ε)w∗,

where w∗ is the weight of a minimum spanning tree.

The running time of the algorithm is Poly
(1
ε
, lg 1

δ
, z, d

)
.

3 Or at least, with probability 1.

Lec 20 – pg. 3 of 6

20.2.1 Motivation

Imagine running Kruskal’s MST algorithm on a graph G = (V ,E,w) whose edge weights are all
integers from the set {1, . . . ,z}. The procedure would look like this:

1 T ←;
2 for i ← 1 to z do
3 while there exists an edge of weight i which has its endpoints in different

connected components do
4 add the edge to T
5 if |T| = n−1 then
6 return T

The number of connected components in T starts at n and decreases by 1 every time we add an edge.
This leads to the following insight, which will be crucial for us:

Observation 20.2. Let G(i) = (V ,E(i)), where E(i) = {e ∈ E : w(e)≤ i}, and let T(i) be the restriction
of T to G(i). Let c(i) be the number of connected components in G(i). Lines 3–6 (plus induction)
guarantee that the number of connected components in T(i) is also c(i). Moreover, the number of
connected components in T(i) is equal to

n−
(
edges in T(i)

)
(this is true for any forest with n vertices). Thus, we have(

edges in T with
weight at most i

)
=

(
edges in T(i)

)
= n− c(i).

Observation 20.2 plus some clever algebra lead to the following lemma:

Lemma 20.3. With G(i), T(i) and c(i) as above, we have

w(T)= n−z+
z−1∑
i=1

c(i).

Proof. Let

A i =
(
edges it T with
weight exactly i

)
and Bi =

(
edges in T with
weight at least i

)
.

Then

Bi = |T|−
(

edges in T with
weight at most i−1

)
= (n−1)−

(
n− c(i−1)

)
= c(i−1) −1.

Now, the clever algebra trick is to notice that

w(T) =
z∑

i=1
i · A i =

z∑
i=1

Bi.

Lec 20 – pg. 4 of 6

(Make sure you see how this works.) Completing the computation,

w(T)=
z∑

i=1
Bi

=
z∑

i=1

(
c(i−1) −1

)

=−z+
z−1∑
i=0

c(i)

= n−z+
z−1∑
i=1

c(i).

Algorithm: MST-APPROX(G,ε,δ,z,d)
1 for i ← 1 to z−1 do
2 B Let G(i) denote the subgraph of G consisting of those edges whose weight is at

most i
3 ĉ(i) ← APPROX-#CC

(
G(i), ε

2z , δ
z

)
4 return the value of

|G.V |−z+
z−1∑
i=1

ĉ(i)

The tricky part here is that we cannot compute G(i) and store it in memory, as that would take
Ω (n+G.E) time. So how does line 3 work? We must modify APPROX-#CC to so as to ignore any
edges of weight greater than i. However, this modification forces us to reconsider the running time
of APPROX-#CC, and is the reason for the dependence on d.

Exercise 20.2.

(i) Suppose we modify APPROX-#CC so as to ignore any edges of weight greater than i. Use an
example to show that, if we treat ε, δ and z as constants but do not allow any dependence on
d, then the breadth-first search on line 3 of APPROX-#CC has worst-case running time Ω(n).
(Hint: Every time we ignore an edge, it takes one step.)

(ii) Despite part (i), we can put a good bound on the running time of the modified version of
APPROX-#CC if we allow the bound to depend on d. Show that the modified breadth-first
search in line 3 of APPROX-#CC (with ε

2z and δ
z standing in for what in APPROX-#CC are

denoted ε and δ) takes O
(

dz
ε

)
time, and thus that the total running time of APPROX-MST is

O
(

dz4

ε3 lg z
δ

)
.

20.2.2 Correctness

The return value of APPROX-MST is

n−z+
z−1∑
i=1

ĉ(i),

Lec 20 – pg. 5 of 6

while in §20.2.1 we showed that

w∗ = n−z+
z−1∑
i=1

c(i).

Thus, to show correctness, we need to show that

Pr

[∣∣∣∣∣z−1∑
i=1

c(i) −
z−1∑
i=1

ĉ(i)

∣∣∣∣∣ > εw∗
]

≤ δ.

By the union bound, it suffices to show that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

z−1
w∗

]
≤ δ

z−1

for each i. Now, because each edge has weight at least 1, we know that w∗ ≥ n−1. So it suffices to
show that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

z−1
(n−1)

]
≤ δ

z−1
.

The correctness of APPROX-#CC guarantees that

Pr
[∣∣∣c(i) − ĉ(i)

∣∣∣ > ε

2z
n

]
≤ δ

z
,

so we are fine as long as
ε

z−1
(n−1) ≥ ε

2z
n,

which holds whenever n > 1. That is good enough.

Lec 20 – pg. 6 of 6

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Sublinear-Time Algorithms
	Estimating the Number of Connected Components
	Estimating the Size of a Minimum Spanning Tree

