
Lecture 7

All-Pairs Shortest Paths II
Supplemental reading in CLRS: Section 25.3

7.1 Johnson’s Algorithm

The Floyd–Warshall algorithm runs in Θ
(
V 3)

time. Recall that, if all edge weights are nonnegative,
then repeated application of Dijkstra’s algorithm using a Fibonacci heap gives the all-pairs shortest
paths in Θ

(
V 2 lgV +V E

)
time. If G is not dense (i.e., if |E| is not on the order of |V |2), then Dijkstra’s

algorithm asymptotically outperforms the Floyd–Warshall algorithm. So our goal for the first half of
this lecture will be to reduce the problem of finding all-pairs shortest paths on an arbitrary graph to
that of finding all-pairs shortest paths on a graph with nonnegative edge weights.

7.1.1 Reweighting

How might we “eliminate” negative edge weights? The naïve way would be to add some constant
N to all the edge weights, where N is chosen large enough to make all the edge weights non-
negative. Unfortunately, this transformation does not preserve shortest paths. Given a path p :
〈u = v0, v1, . . . ,vk = v〉 from u to v with total weight w(p)=∑k

i=1 w(vi−1,vi), the weight of p in the new
graph would be w(p)+kN. Thus, a very light path in the original graph might not be so attractive in
the new graph, if it contained lots of edges (see Figure 7.1).

We will need to do something smarter; the change in weight must vary from edge to edge. Our
goal is to assign to each edge (u,v) a new weight ŵ(u,v), such that the new weight function ŵ has
the following two properties:

1. For each pair of vertices u,v ∈V and each path p : u v, the old weight w(p) is minimal if and
only if the new weight ŵ(p) is minimal (among paths from u to v).

2. For all edges (u,v), the new weight ŵ(u,v) is nonnegative.
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Figure 7.1. Adding a constant to the weight of every edge does not preserve shortest paths.



A clever, simple solution to this problem is as follows. Let h : V → R be a scalar-valued function
on the vertices. Assign

ŵ(u,v)= w(u,v)+h(v)−h(u).

This weighting has the property that, for a path p : 〈u = v0, v1, . . . ,vk = v〉, the new weight is

ŵ(p)=
k∑

i=1
ŵ (vi−1,vi)

=
k∑

i=1
w (vi−1,vi)+h (vi)−h (vi−1)

= w(p)+
k∑

i=1
h (vi)−h (vi−1)

= w(p)+h (vk)−h (v0)

= w(p)+h(v)−h(u),

by telescoping. Thus, the amount by which p changes depends only on the endpoints u and v, not on
the intermediate vertices. Consequently, a path p : u v is minimal with respect to ŵ if and only if
it is minimal with respect to w. Also, if u = v, then ŵ(p)= w(p), so the weight of cycles is unchanged.
Thus, negative-weight cycles are preserved, so the distance from u to v with respect to ŵ is −∞ if
and only if the distance from u to v with respect to w is −∞.

Our task now is to choose an appropriate function h so that the edge wieghts ŵ become nonnega-
tive. There is a magical answer to this question: Let s be a new vertex, and construct an augmented
graph G′ = (V ′,E′) with V ′ =V ∪{s}. Take E′ to consist of all the edges in E, plus a directed edge from
s to each vertex in V (see Figure 7.2). Then let

h(v)=−δ(s,v),

where δ(s,v) is the weight of the shortest path from s to v. Note that Proposition 6.1 implies the
“triangle inequality”

δ(s,v)≤ δ(s,u)+δ(u,v)

(with equality if one of the shortest paths from s to v passes through u). Since δ(u,v) ≤ w(u,v), we
have

δ(s,v)≤ δ(s,u)+w(u,v).

Hence

ŵ(u,v)= w(u,v)+h(v)−h(u)

= w(u,v)−δ(s,v)+δ(s,u)

≥ w(u,v)− (
δ(s,u)+w(u,v)

)+δ(s,u)

= 0.

Applying the weights ŵ to G, we obtain the following algorithm, due to Johnson:
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Figure 7.2. The augmented graph G′ in Johnson’s algorithm, consisting of G together with a special vertex s from which
there emanates an edge of weight 0 to each other vertex.

Algorithm: JOHNSON(G)
1 Construct the augmented graph G′, where G′.V = G.V ∪ {s} and G′.E = G.E ∪{

(s,v) with G′.w(s,v)= 0, for each v ∈G.V
}

2 if BELLMAN–FORD(G′, s)= FALSE then
3 B if BELLMAN–FORD complains about a negative-weight cycle
4 error “The input graph contians a negative-weight cycle.”
5 else
6 for each vertex v ∈G.V do
7 Set h(v)←−δ(s,v), where δ(s,v) is as computed by BELLMAN–FORD

8 for each edge (u,v) ∈G.E do
9 ŵ(u,v)←G.w(u,v)+h(v)−h(u)

10 Let D = (
duv

)
and Π= (

πuv
)

be new n×n matrices
11 for each vertex u ∈G.V do
12 Run DIJKSTRA(G, ŵ,u) to compute δ̂(u,v) for all v ∈G.V
13 for each vertex v ∈G.V do
14 B correct the shortest path weights
15 duv ← δ̂(u,v)− (

h(v)−h(u)
)

16 πuv ← the predecessor of v as computed by DIJKSTRA(G, ŵ,u) above
17 return D

The only steps in this algorithm that take more than O(E) time are the call to BELLMAN–FORD

on line 2 (which takes Θ(V E) time) and the |V | calls to DIJKSTRA on lines 11–16 (each of which
takes Θ

(
V lgV +E

)
time using a Fibonacci heap). Thus, the total running time of JOHNSON is

Θ
(
V 2 lgV +V E

)
.
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7.2 Linear Programming

Linear programming is a very general class of problem that arises frequently in diverse fields. The
goal is to optimize a linear objective function subject to linear constraints (equalities and inequali-
ties). That is, we want to maximize or minimize the function

f (x1, x2, . . . , xn)= a1x1 +a2x2 +·· ·+anxn =
n∑

j=1
a jx j

subject to the constraints

g(i) (x1, . . . , xn)= b(i)
1 x1 +b(i)

2 x2 +·· ·+b(i)
n xn =

n∑
j=1

b(i)
j x j = p(i)

and

h(i) (x1, . . . , xn)= c(i)
1 x1 + c(i)

2 x2 +·· ·+ c(i)
n xn =

n∑
j=1

c(i)
j x j ≤ q(i).

In vector form, we want to maximize or minimize

aTx

subject to the constraints
Bx=p and Cx≤q

(meaning that the ith entry of Cx is less than or equal to the ith entry of q for every i). Here B and
C are matrices with n columns (and any number of rows).

7.2.1 Application: Bacterial Growth

One of the many applications of linear programming is the problem of maximizing bacterial growth
subject to biochemical constraints. Consider the transport pathways of a bacterial cell, which we
model as a graph embedded in three-dimensional space (see Figure 7.3). Let xi be the flux through
edge i.

• At steady-state, the net flux through each vertex of the graph is zero, as wastes are not building
up along the cell pathways. This amounts to a linear constraint at each vertex, e.g., x1−x2−x3 =
0 in the picture.

• Each edge has a minimum (namely zero) and a maximum rate at which molecules can pass
through. This amounts to a linear constraint 0≤ xi ≤ v(i)

max at each edge.

• The objective function is the sum of fluxes contributing to biomass production (e.g., synthesis
of amino acids and proteins).

The availability of efficient solutions to linear programming problems has been valuable in the engi-
neering of new bacterial strains with improved capabilities, e.g., to produce biofuels.
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Figure 7.3. Bacterial cell, with a graph representing its transport pathways. At steady-state, the net flux through each
vertex is zero.

7.2.2 Difference Constraints as Graphs

It turns out that shortest path problems are related to some forms of linear programming problems.
Consider a system of linear constraints, each having the form

x j − xi ≤ bk,

in other words, a system of the form
Ax≤b,

where A is an m× n matrix, x is an n-dimensional vector and b is an m-dimensional vector, and
where each row of A contains one 1, one −1, and all other entries are zero. As a concrete example,
let’s consider the system 

1 −1 0 0
1 0 0 −1
0 1 0 −1
−1 0 1 0
0 0 −1 1




x1
x2
x3
x4

≤


0
−1
1
5
−3

 .

This is equalivalent to the inequalities 

x1 − x2 ≤ 0

x1 − x4 ≤−1

x2 − x4 ≤ 1

x3 − x1 ≤ 5

x4 − x3 ≤−3


.
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Figure 7.4. Constraint graph for the system of difference constraints Ax≤b, where A and b are as in our example.

Two plausible solutions to this system are

x=


−5
−3
0
−4

 , x=


0
2
5
1

 .

In general, it’s not hard to see that adding any multiple of (1,1,1,1)T to a solution produces another
solution.

Let’s now construct a graph G, called the constraint graph for this system (see Figure 7.4). The
vertex set of G is V = {

v0, . . . ,vn
}
. Draw a directed edge with weight 0 from v0 to each other vertex.

Then, for each difference constraint x j − xi ≤ b, draw an edge from vi to v j with weight b.

Theorem 7.1 (Theorem 24.9 of CLRS). Given a system Ax≤b of difference constraints, let G = (V ,E)
be the corresponding constraint graph. If G contians no negative-weight cycles, then

x=


δ (v0,v1)
δ (v0,v2)

...
δ (v0,vn)


is a feasible solution. If G does contain negative-weight cycles, then there is no feasible solution.

Proof. Assume there are no negative-weight cycles. Since shortest paths satisfy the triangle inequal-
ity, we have

δ
(
v0,v j

)︸ ︷︷ ︸
x j

≤ δ (v0,vi)︸ ︷︷ ︸
xi

+w
(
vi,v j

)︸ ︷︷ ︸
b

.

Rearranging, we obtain
x j − xi ≤ b.

Next, consider the case of a negative-weight cycle. Without loss of generality, assume the cycle is
of the form c = 〈

v1, v2, . . . , vk, v1
〉
. Then any solution x to the system of difference constraints must

satisfy
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x2 − x1 ≤ w (v1,v2)
x3 − x2 ≤ w (v2,v3)

...
xk − xk−1 ≤ w (vk−1,vk)

+ x1 − xk ≤ w (vk,v1)
0 ≤ w(c) < 0,

a contradiction. Therefore there cannot be any solutions to the system of difference constraints.
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