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Practice Quiz 2 for Spring 2012

These problems are four of the five problems from the take-home exam given in spring 2011, along

with the full instructions given with the exam so that you have a sense of what the take-home exam

will be like.

Because of the order in which we’re doing things this term, you should be able to work on

problems 1, 3, and 4 over spring break. You may not have enough knowledge to do problem 2

until after we come back from break.

Guide to this quiz: For problems that ask you to design an efficient algorithm for a certain

problem, your goal is to find the most asymptotically efficient algorithm possible. Generally, the

faster your algorithm, the more points you receive. For two asymptotically equal bounds, worst-

case bounds are better than expected or amortized bounds. The best solution will receive full points

if well written, but ample partial credit will be given for any good solution, especially if it is well

written. Bonus points may be awarded for exceptionally efficient or elegant solutions.

Plan your time wisely. Do not overwork, and get enough sleep. Your very first step should be

to write up the most obvious algorithm for every problem, even if it is exponential time, and then

work on improving your solutions, writing up each improved algorithm as you obtain it. In this

way, at all times, you have a complete quiz that you could hand in.

Policy on academic honesty: The rules for this take-home quiz are like those for an in-class

quiz, except that you may take the quiz home with you. As during an in-class quiz, you may not

communicate with any person except members of the 6.046 staff about any aspect of the quiz, even

if you have already handed in your quiz solutions. In addition, you may not discuss any aspect of

the quiz with anyone except the course staff until you get them back graded.

This take-home quiz is “limited open book.” You may use your course notes, the CLRS text-

book, and any of the materials posted on the course web site, but no other sources whatsoever may

be consulted. For example, you may not use notes or solutions to problem sets, exams, etc. from

other times that this course or other related courses have been taught. In particular, you may not

use any materials on the World-Wide Web. You probably will not find information in these other

sources that will help directly with these problems, but you may not use them regardless.

If at any time you feel that you may have violated this policy, it is imperative that you contact

the course staff immediately.

Write-ups: Each problem should be written up separately and submitted to the appropriate turn-

in area on Stellar. The Stellar website will have a LAT X template for each problem solution for youE
to use. You need not submit a LAT X solution, although we would prefer it, but you must submitE
your solutions electronically.
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Your write-up for a problem should start with a topic paragraph that provides an executive

summary of your solution. This executive summary should describe the problem you are solving,

the techniques you use to solve it, any important assumptions you make, and the asymptotic bounds

on the running time your algorithm achieves, including whether they are worst-case, expected, or

amortized.

Write your solutions cleanly and concisely to maximize the chance that we understand them.

When describing an algorithm, give an English description of the main idea of the algorithm.

Adopt suitable notation. Use pseudocode if necessary to clarify your solution. Give examples,

draw figures, and state invariants. A long-winded description of an algorithm’s execution should

not replace a succinct description of the algorithm itself.

Provide short and convincing proofs for the correctness of your solutions. Do not regurgitate

material presented in class. Cite algorithms and theorems from CLRS, lecture, and recitation to

simplify your solutions. Do not waste effort proving facts that can simply be cited.

Be explicit about running time and algorithms. For example, don’t just say that you sort n
numbers, state that you are using merge sort, which sorts the n numbers in O(n lgn) time in the

worst case. If the problem contains multiple variables, analyze your algorithm in terms of all the

variables, to the extent possible.

Part of the goal of this quiz is to test your engineering common sense. If you find that a question

is unclear or ambiguous, make reasonable assumptions in order to solve the problem. State clearly

in your write-up what assumptions you have made. Be careful what you assume, however, because

you will receive little credit if you make a strong assumption that renders a problem trivial.

Good Luck!
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Problem 1. For Whom the Road Tolls. [24 points]

Eleanor Sevt is planning to drive from Boston to Los Angeles, but she has only limited funds to

make the trip. Fortunately, she is using the MIT solar car, which requires no gas for the journey.

Thus, her only costs will be the toll roads she takes on the way. She has acquired a digital model

of the North American road network, which consists of a directed graph G = (V,E), where V
represents road intersections and E represents the roads themselves. For each edge e ∈ E there is

a length ℓ(e) ∈ in miles and a cost c(e) ∈ in cents for tolls (most of the costs are 0). Give

an efficient algorithm to find the shortest path from Boston to L.A. that does not exceed x cents in

tolls, where x is given as input.

Solution:

Executive Summary

We reduce the problem to finding a shortest path in a graph with lengths only (no costs), and solve

the problem using Dijkstra’s algorithm. The algorithm is run on a graph where the vertices also

record the cost of reaching them. This graph is larger than the input graph by a factor of Θ(x).

We make the following assumptions: (1) The graph is sparse |E| = O(|V |); (2) The budget is

small, and in particular, x ≤ |V |. Under these assumptions, the running time is Θ(V x lg V ).

Algorithm

Given the graph G = (V,E) with lengths ℓ(e) and costs c(e), we run Dijkstra on a new graph with

lengths only:

• The vertex set of the new graph is V × {0, . . . , x}, so a vertex is coupled with a cost of

reaching it.

• The edge set of the new graph contains an edge e′ = (〈u, c1〉, 〈v, c2〉) if (u, v) ∈ E and

c1 + c(u, v) = c2. The length of e′ is l(u, v).

The start vertex is 〈s, 0〉 where s ∈ V is the vertex that corresponds to Boston.

(Notice that lengths are positive, so one can invoke Dijkstra)

Denoting by t ∈ V the vertex that corresponds to L.A., we then output the shortest path from

〈s, 0〉 to 〈t, c〉 among all possible costs c ∈ {0, . . . , x} (outputting only the V vertices and not the

coupled costs).

R Z
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Correctness

We show that paths from s to t of cost c ∈ {0, . . . , x} in G are in one-to-one correspondence with

paths from 〈s, 0〉 to 〈t, c〉 in the new graph, where corresponding paths have identical lengths. So,

the shortest paths are in correspondence as well.

Lemma 1 If 〈s, 0〉 → 〈v1, c1〉 → · · · → 〈vk, ck〉 is a path in the new graph, then s = v0 → v1 →
· · · → vk is a path in G of cost ck.

Lemma 2 If s = v0 → v1 → · · · → vk is a path in G of cost c ∈ {0, . . . , x}, then for c0 = 0,

ci = ci−1 + c(vi−1, vi) we have that 〈s, 0〉 → 〈v1, c1〉 → · · · → 〈vk, c〉 is a path in the new graph.

(Proofs are by induction on k; they are omitted here, but should have appeared in your solution)

Running Time Analysis

Constructing the new graph takes time linear in its size Θ(V x + Ex). Running Dijkstra using

Fibonacci heaps takes time Θ(V x lg(V x) +Ex). Finding the shortest path of cost at most x takes

time Θ(x). This is a total of Θ(V x lg(V x) + Ex).

Reasonable assumptions are that the graph is sparse, so |E| = Θ(V ), and that the budget is small,

and, in particular, x ≤ |V |. The running time under these assumptions is Θ(V x lg V ).

A Sketch of an Alternative Solution

Alternatively, one can use Dijkstra’s algorithm on the original graph x+1 times to compute shortest

paths from s to all vertices v ∈ V of cost c for c = 0, 1, . . . , x.

Denote the length of the shortest path of cost c from a vertex u ∈ V to a vertex v ∈ V by δc(u, v).
In the c’th application of Dijkstra one computes δc(s, ·):

1. The initialization step sets δ0(s, s) = 0 and δ0(s, v) = ∞ for v = s ∈ V .

2. One invokes a modified Dijkstra on G with δc, updating only paths of cost c.

3. The computed shortest paths are updated in preparation for the next step, so for every edge

(u, v) ∈ E with 1 ≤ c(u, v) ≤ c + 1, we have δc+1(v) ≤ δc+1−c(u,v)(u) + ℓ(u, v).

6
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Remarks

• A straightforward greedy strategy does not work. Consider the following scenario: there are

two ways to get to a vertex v ∈ V : one has lower cost but is longer, while the other has higher

cost but is shorter. It is not a-priori clear which is better. In general we are looking for the

shortest path, but it might be better to take the longer cheaper road, if we are forced to take

expensive roads later.

• If x can be exponentially large in n, the problem is NP-hard, so expect the running time for

such large x to be exponential.

Solutions We Saw

Correct but less efficient algorithms:

• A Bellman-Ford type algorithm that computes the shortest path from s to v of length at most

k and cost c for all v ∈ V , for all k = 0, 1, . . . , |V |−1, for all c = 0, 1, . . . , x. This algorithm

is correct but has worse running time O(V Ex).

• A Floyd-Warshall type algorithm, which is correct but even less efficient.

Incorrect Dijkstra+dynamic programming algorithms: A Dijkstra type algorithm where one

stores per vertex the shortest distance for every possible cost c = 0, 1, . . . , x, but each vertex

v ∈ V is “visited” only once (extracted from the queue, the edges adjacent to it are relaxed). This

algorithm does not work.

Exponential-time algorithms:

• An algorithm that enumerates over all possible choices of toll roads. This is sub-exponential

time when the number of toll roads is sub-linear. We do not consider reasonable the assump-

tion that the number of toll roads is logarithmic or constant.

• A brute-force algorithm, enumerating all possible paths from s to t, running in exponential

time.

• A 0-1 linear program. If formulated right, this gives an exponential time algorithm.

Incorrect Dijkstra algorithm: A Dijkstra algorithm that only dismisses paths of cost more than

x.
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Heuristics: These yield algorithms that do not work for many possible inputs:

• Iteratively remove the most expensive edge from the shortest path.

• Iteratively remove the edge with worst cost to distance ratio.

• Combine shortest path with cheapest path.

Others:

• A BFS/DFS type linear-time algorithms.

• Wrong formulation of linear program.

Problem 2. Rounding a Square Matrix. [24 points]

(NOTE: You may want to wait to work on this problem until after spring break.)

Consider an n×n matrix A = (aij), each of whose elements aij is a nonnegative real number, and

suppose that each row and column of A sums to an integer value. We wish to replace each element

aij with either ⌊aij⌋ or ⌈aij⌉ without disturbing the row and column sums. Here is an example:



10.9 2.5 1.3 9.3
 

11 3 1 9


3.8 9.2 2.2 11.8 4 9 2 12

. 7.3 0.6
→





7.9 5 2



 

7 5 8 1







3.4 13.1 1.2 6.3

 

4 13 2 6



Give an efficient algorithm to determine whether such a rounding is possible, and if so, to produce

the rounded matrix. Be sure to argue that your algorithm is correct.

Solution:

Executive Summary

Finding a feasible rounding can be reduced to finding a max flow in a flow network with nodes

corresponding to rows and columns in A and capacities corresponding to row and sum columns.

The total running time depends on the time to find a max flow. With a Ford-Fulkerson method, this

is O(n4).

There is always a valid rounding that preserves the row and column sums. This is true regardless

of A, as long as the initial row and column sums of A are integers.
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Algorithm and Correctness

Denote the decimal part of A by A′ = (aij − ⌊aij⌋), obtained by subtracting the floor of every

element. Let r and c be the sum of row i and column j of A′
i j respectively. Note that the identity

∑

i ri =
∑

j cj always holds for any A because
∑

i ri and
∑

j cj are just two different ways of

summing over all elements in A′.

Consider representing a rounding of A with a n-by-n binary matrix B ∈ (bij) where bij = 1 if aij
is rounded up or bij = 0 if aij is rounded down or is an integer. If additionally the row and column

sums of B are equal to those of A′, i.e.
∑

j bij = ri and
∑

i bij = cj , then B corresponds to a valid

rounding of A. Thus, the problem of finding a valid rounding of A is equivalent to finding a B that

satisfies the row and column constraints.

We can further reduce this problem to finding the max flow in the flow network G = (V,E)
constructed as follows

1. V is composed of

• a source node s

• a sink node t

• a node xi ∀i = {1, . . . , n}
• a node yj ∀j = {1, . . . , n}

2. Set the capacities ∀i, j ∈ {1, . . . , n}
• c(s, xi) = ri

• c(yj, t) = cj

• c(xi, yj) = 1

3. Set all other capacities to 0.

The xi and yj nodes represent the rows and columns of B, respectively. The capacities of the

edges from s to xi and the edges from t to yj represent the row and column sum constraints of B,

respectively. Every edge running from an xi to an yj has unit capacity. Note that G has O(n) nodes

and O(n2) edges of non-zero capacity.

G has a nice visual structure to it. The subgraph induced from taking the xi nodes and the yj nodes

forms a bipartite graph where the nodes are likewise divided between the xi nodes and yj nodes.

Lemma 3 There exists a valid rounding of A if and only if a max flow in G saturates the edges

(s, xi) ∀i ∈ {1, . . . , n}.

PROOF. Let B be the binary matrix representing a valid rounding of A. Recall B has the

constraints
∑

i
bij = ri and

∑

j
bij = cj ∀i, j ∈ {1, . . . , n}. Define the flow f with values
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∀i, j ∈ {1, . . . , n}

f(s, xi) = ri

f(yj, t) = cj

f(xi, cj) = bij

Infer the other values from skew symmetry. f satisfies flow conservation for every xi node because
∑

v∈V f(v, xi) = f(s, xi)−
∑

j f(xi, cj) = ri −
∑

j bij = 0, and similarly also for every yj node.

Clearly f satisfies the capacity constraints, so f is a valid flow in G. By construction, f saturates

the edges (s, xi) ∀i. Thus, |f | equals the capacity of the cut (s, V − s). By the min-cut max-flow

theorem, f is a max flow.

For the converse, let f be a max flow in G that saturates the edges (s, xi) ∀i ∈ {1, . . . , n}. Because
∑

i ri =
∑

j cj and |f | =
∑

i f(s, xi) =
∑

j f(yj, t), f also saturates the edges (yj, t) ∀j ∈
{1, . . . , n}.

From f , construct a matrix B, where bij = f(xi, yj) ∀i, j. Suppose f is found through the Ford-

Fulkerson method. By the integrality theorem (c.f. recitation or CLRS 3rd ed., Theorem 26.10),

all of the flow values of f are integer. (Note that non-Ford-Fulkerson methods do not necessarily

produce integer max flows). Hence, f(xi, yj) ∈ {0, 1} ∀i, j, and so B is a binary matrix. From

flow conservation and saturation, ∀i, j ∈ {1, . . . , n}

ri = f(s, xi) =
∑

f(xi, yj) =
∑

bij
j j

cj = −f(yj, t) =
∑

f(xi, yj) =
∑

bij
j i

Thus, B corresponds to a valid rounding of A. Intuitively, the elements aij which are rounded

up are precisely those that have positive flow in the edges (xi, yj). In this sense, the max flow f
“marks” with positive flow the elements to round up and leaves “unmarked” with zero flow the

elements to be rounded down.

Lemma 4 A max flow in G always saturates the edges (s, xi) ∀i{1, . . . , n}.

PROOF. Define the flow f with values ∀i, j ∈ {1, . . . , n}

f(s, xi) = ri

f(t, yj) = cj

f(xj , yj) = aij − ⌊aij⌋

Infer the other flow values by skew symmetry. This flow saturates all of the edges coming out of the

source and the edges into the sink. It also sets the flow of every edge (xi, yj) to the corresponding
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floating point element aij − ⌊aij⌋ in A′. f satisfies the capacity constraints, and by definition of ri
and cj , it is easy to see that f satisfies flow conservation. Thus, f is a valid flow.

|f | = c(s, V − s), so f is a max flow.

(Side note: you may wonder why don’t we just construct the max flow in this proof quickly in

O(n2) time and then use it to deduce a valid rounding of A as we did in the previous lemma. This

won’t work because f here isn’t necessarily integer valued, a requirement for the previous lemma.)

The above lemma says we can always construct such a max flow, so it follows that there always

exists a valid rounding of A.

Runtime

Constructing the flow network G takes O(n2). A Ford-Fulkerson method operates in O(E|f ∗|)
time, where |f ∗| is the max flow. |E| = O(n2) and |f ∗| = O( r ) = O(n2

ii
). So, the total time is

O(n4).

∑

An Edmonds-Karp analysis would yield O(V E2) = O(n5) runtime. It is possible to achieve a

better runtime using more sophisticated max flow algorithms we haven’t learned in class, but we

did not penalize students for not mentioning this.

Common pitfalls

1. A good number of students took a greedy approach to perform the rounding. In general these

approaches do not work because a greedy algorithm rounds an element in A and ignores its

effects on other elements. Moreover, a greedy approach may fail to find a valid rounding even

if one exists. The solution, given above, indicates that such a rounding is always possible. A

greedy approach, usually, doesn’t give any guarantees on the existence of a solution.

Consider a greedy strategy that starts out with a binary matrix B filled with zeros. The

algorithm iteratively chooses an element bij to set to 1 such that the row and column sums of

B are still less than or equal to the desired sums ri and cj , respectively. The algorithm keeps

track of running totals of the row and column sums of B so that it knows which elements

can be rounded up. If the running totals eventually equal ri and cj , then the algorithm has

found a valid rounding, otherwise it will report that no rounding exists. We will show that

this algorithm does not work on the matrix



0.5 0.1 0.4


A = 0.1 0.9 0.0

0.4 0.0 0.6


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The algorithm initializes B as

1 1 2

1


0 0 0


B = 1 0 0 0
2



0 0 0



where the values on the borders represent the difference between and a row or column sum in

A with the current sum (the running total) in the corresponding row or column in B. In other

words, this is the number of elements the algorithm is still allowed to round up. Suppose that

our greedy algorithm chooses to set all of the elements on the diagonal to be 1. We get

0 0 1

0


1 0 0


B = 0 0 1 0 .
1



0 0 1



Convince yourself that given this selection, it is no longer possible to arrive at a valid rounding

without backtracking. So, this greedy algorithm (modulo backtracking) would fail, even

when there does indeed a valid rounding such as the one represented by

0 0 0

0


0 1 1


B = 0 1 0 0
0



1 0 0



In general, greedy approaches fail because they fix a rounding by examining a local set of

elements. Usually, greedy algorithms neither backtrack nor modify the existing solution.

This is what makes them simple and fast. However, we have seen that it is, often, required to

backtrack and modify the current rounding if no further progress can be made. Besides that,

analysing algorithms that extensively rely on backtracking is hard. More often than not, the

bounds on backtracking algorithms, are powered by a strong theorem. Take for instance the

max-flow. The Edmonds-karp algorithm finds augmenting paths over and over again. There

is no guarantee that it will terminate in polynomial number of steps given that there could

be an exponential number of augmenting paths. But, the Monotonicity Lemma bounds that

number of iterations that Edmonds-Karp performs. One could find such theorems behind

every max-flow algorithm. It is in this manner that the reduction to max flow transcends the

limitations of a local approach.

Many greedy approaches purport an O(n2) running time. These approaches can be extended

to solve for max-flow or maximum bipartite matching. However, it is well known that neither

max-flow nor maximum bipartite matching take in greedy approaches. In other words, greedy

approaches do not work for these problems.

2. Some students constructed a reduction to a flow network, very similar to one described above,

and then found a maximum bipartite matching over it. It seems that some of you, may have,
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are unable to distinguish (perhaps, unsurprisingly) between max-flow and maximum bipartite

matching problem. A bipartite graph is a graph G = (V,E) where V can be partitioned into

A and B such that all the edges go from A to B. The bipartite matching problem asks for a

selection of a subset of edges E ′ ⊂ E from the bipartite graph such that ∀v ∈ V , there is at

most one edge e ∈ E ′ incident on v. This is different from the max-flow problem.

3. A few students attempted to formulate the row and column constraints as a linear program.

However, the variables in these constraints have to be integer valued. This turns our linear

program into an Integer Linear Program. As we have seen in class, solving Integer Linear

Programs is NP-hard and an efficient solution is not yet known.

Problem 3. Hyperjumping to Cloud City. [24 points]

Having successfully evaded Darth Vader’s fleet in the asteroid field near the planet Hoth, Han Solo

and his crew need to make their way to Cloud City in the Bespin system to meet with Lando

Calrissian. After a damage inspection, Chewbacca reports that the hyperdrive in the Millennium

Falcon is partially disabled and can only make up to four jumps to hyperspace — a fifth jump

would certainly prove disastrous.

Moreover, the control panel for entering jump coordinates is damaged, and the only hyperspace

jumps that can be performed are from the database of “Recent Jumps,” which contains a large

number n of previous jumps. Each jump in the “Recent Jumps” database is an integer triple

(∆x,∆y,∆z), as specified using the Empire Coordinate System (ECS). A jump displaces the ship

by that the specified number of light years in each dimension. That is, if the ship’s current location

is (x, y, z), its position after the jump is (x+∆x, y +∆y, z +∆z).

Han Solo needs to know as quickly as possible if they can make it to Cloud City, and he needs your

help to determine how. The Falcon is currently located at (−21820, 27348, 36072)ECS. Find an ef-

ficient algorithm to determine if they can reach Bespin, which is located at (−23252, 35712, 24387)
ECS, in at most four of the n jumps from the “Recent Jumps” database, and if so, how.

Solution:

Executive Summary

If we add the jump (0, 0, 0) to the hash table, then the task is to find a combination of 4 vectors in

the database that add up to a specific vector. Observe that, this is exactly the same problem to find

if for any of the 2-jump combinations there exists some other 2-jump combination such that the

addition of both the pairs gives the desired vector. This problem can be done in O(n2) expected

time by using hashing to perform the lookup. We first hash all the n2 combinations of jumps and

then search for the complementary jump in the hash table.
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Algorithm

We use a hash table H supporting operations INSERT(k, v) which inserts value v at key k and

SEARCH(k) which returns value v stored with key k or NIL if the no value is stored (see CLRS

Chapter 11). Both operations can be performed in O(1) expected time. We use a jump vector – a

triple of three integers – as the key. To do so simply concatenate the binary representation of the

integer coordinates. The stored values are pairs of such vectors, or 2-jumps.

Let ∆V denote the difference vector between Bespin and the current location, i.e.,

∆V = (−23252, 35712, 24387)− (−21820, 27348, 36072)

The algorithm inserts all 2-jumps into the hash table, and scans if the complementary 2-jump is

already stored. While inserting them, if two different pairs of jumps combine to the same vector

(i.e., the key is not unique), we keep the pair that is inserted first.

Assume RJ refers to the “Recent Jumps” database.

1 H = CREATE-HASH-TABLE()
2 RJ ′ = RJ ∪ (0, 0, 0)
3 for j1 ∈ RJ ′

4 for j2 ∈ RJ ′

5 H.INSERT(j1 + j2, (j1, j2))
6 // Search for complement

7 for j1 ∈ RJ ′

8 for j2 ∈ RJ ′

9 x = H.SEARCH(∆V − (j1 + j2))
10 if x = NIL

11 (j3, j4) = x
12 return (j1, j2, j3, j4)
13 return NIL // No solution

Correctness

If the algorithm returns (j1, j2, j3, j4) in line 12 then j3 + j4 = ∆V − (j1 + j2), hence j1 + j2 +
j3 + j4 = ∆V . If we ignore the (0, 0, 0) jumps among those four, then we get a combination of up

to 4 jumps from RJ that add up to ∆V .

On the other hand, if there exists a combination of 1, 2, 3, or 4 jumps in RJ that add up to ∆V then

there exists a combination of exactly 4 jumps in RJ ′ that add up to ∆V . Denote them i1, i2, i3, i4.
When j1 + j2 = i1 + i2, there must be a value stored at i3 + i4 = ∆V − j by then and therefore

the algorithm will return in 12.

6
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Running Time Analysis

We perform up to n2 INSERT and SEARCH operations each taking O(1) expected time. Thus the

overall expected running time is O(n2).

Discussion

Using the (0, 0, 0) vector is not necessary for correctness but simplifies the description and analysis

of the algorithm dramatically so earned a bit of bonus.

Many solutions using hashing tried to “derandomize” and provide a worst-case bound instead of an

expected time bound. Although using perfect hashing gives worst-case guarantees on the SEARCH

operation, building a perfect hashing data structure for n2 keys is a random process and takes O(n2)
expected time. Also note that the fact that the algorithm tolerates key collisions (if two pairs of

jumps add up to the same vector, we only need to keep one), the hash table implementation must

still resolve collisions in the hash function.

Many students observed that the lookup of the complementary jump pair can be performed quickly

if the list of jumps is sorted. First we define a total order of vectors: to compare two vectors

compare them by the first coordinate and if equal use the next coordinate and so on. We build

two lists: one of all 2-jump vectors and one of their complements to ∆V . We then sort both with

the same comparison operator. We need to find two equal elements in the two lists. Students who

used MERGE-SORT to perform the sort in O(n2 lg n) time simply used binary search to find the

complement of each of the n2 pairs in O(lgn) time.

Many students seeked better performance by observing that both the sort and the search can be per-

formed in O(n2) time. Given the two sorted lists, we can find the matching combination in O(n2)
time (linear in size of the lists) by performing an operation similar to MERGE (see CLRS 2.3.1, p.

31) and returning whenever it finds two matching elements in the two lists. To obtain O(n2) time

for sort, they used RADIX-SORT (see CLRS 8.3, p. 197), by assuming that the coordinates use a

constant number of bits. Such solutions should include that factor in the overall running time, i.e.,

O(dn2).

A brute-force solution enumerates all 4-jumps and takes O(n4) time. Note that the desired combi-

nation of 4-jumps is not the shortest path to the destination.

Finally, a fraction of the students attempted to use linear programming, but in most cases missed

the fact that this would require integer constraints and thereby, making the problem NP-complete.
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Problem 4. The Price of a Favor [24 points]

Don Corleone is hearing requests for favors during his daughter Connie’s wedding. You are one of

the many waiting in line to ask a favor of the Don. It is customary that after requesting a favor, you

offer the Don a monetary gift. The Don has a different price X for every favor he grants, which

his consigliere (trusted adviser) knows implicitly.

It is highly impolite for you to ask outright, “What will the favor cost me?” to find out the Don’s

price X . Instead, you must place some cash in an envelope and hand it to the consigliere. The

consigliere then inspects the envelope. If your offer meets or exceeds X , the consigliere nods and

hands the envelope to the Don, who puts it in his pocket and then grants your favor. If the offer is

less than X , however, the consigliere takes your offer and puts it in his own pocket and does not

allow the Don to be insulted by your puny gift. In this case, your gift is lost to the consigliere, and

you must try again with a bigger gift.

Give and analyze a competitive strategy that minimizes the amount of money you must pay to

obtain your favor from the Don.

Solution:

Executive Summary

We assume that X is at least 1 unit. For otherwise, if X could be made arbitrarily small, the

competitive ratio can be made as large as we wish. We also assume that the distribution of X is

uniform over the entire domain. We, now, give a sketch of our strategy.

Our strategy is to pick an initial offer in the range [1, e) randomly according to a probability dis-

tribution p(x) = 1/x. Each time the offer is rejected, we try again with an offer e times more than

the last offer. The claim, we make, is that irrespective of what X is, the expected amount of money

our we end up paying for a favor is at most eX . In other words, we achieve a competitive ratio of

e.

Strategy

DON:

1 r ∈R [1, e) // r is chosen at random with Pr[r = x] = 1/x
2 O = r
3 while O < X
4 O ≥ e · O
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Correctness

We assume that it is possible to pick a number from the interval [1, e] at random according to the

probability distribution Pr[r = x] = 1/x. Thus, given any O ∈R [1, e). Each subsequent offer

is a positive amount of money. Furthermore, the nth offer will have a value of r · en−1. Notice

that the sequence is a monotonically increasing one. Thus, irrespective of X (X is some constant),

r · en−1 > X for sufficiently large n, so eventually one

Z

of the offers will be accepted.

Competitive Analysis

Lemma 5 DON is e-competitive with OPT.

Proof. DON generates a sequence of integers xi i∈ during any execution. Specifically, the

sequence generated by our scheme is x = r ·en−
{
1

}
n , r ∈R [1, e). Every offer that our scheme makes

is e times the previous one. So, there is a unique c and n, c ∈ [0, 1] and n ∈ , such that X = c ·en.

So, in our scheme if r < c, DON iterates for n + 1 rounds. If r ≥ c, DON

Z

iterates n times. Let Y
denote the total cost we end up paying Don. Then,

∫ c e
E [Y ] = 1/r

1

(

r · en+2

e−1

)

dr +
∫

en+1

c
1/r

(

r ·
e−1

)

dr

= (c− 1) · en+2

e−
+ (e

1
− c) e

n+1
−1

e−1

= 1
e−

[

c ·
(

en+2
1

− en+1
)

+ e ·
(

en+1 − 1
)

− en+2 + 1
]

= 1
e−1

·
[

(e− 1) · (en+1) + (1− e)
]

= eX − 1

≤ eX

Thus, the total expected cost is no greater than eX , so DON is e-competitive with OPT.

The analysis given above can be extended to r sampled from [1, α), for any constant α and thus,

derive an expression for competitive ratio as a function of α. An interesting question would be to

find an α which minimizes the competitive ratio. This is left as an exercise for the reader.

Alternate Strategies

There have been a variety of randomized schemes. The standard template seems to be choosing

your initial offer uniformly at random and then generate a geometric series. A few students have

chosen the ith bid, uniformly at random from [2i−1, 2i], to construct a 3-competitive scheme.



Anothe√r genre is to use only one bit of randomness. In the doubling strategy, we set the initial bid

to 1 or 2 with equal probability. This yields a (2 +
√
2)-competitive strategy.

A lot of students have come up with a deterministic strategy which doubles the offer, every-time it

is rejected. This is 4-competitive. A bunch of them went on to generalize the scheme to any deter-

ministic geometric sequence and have shown that doubling is, essentially, asymptotically optimal.

A few of you have conjectured that 4 is optimal for deterministic strategies. As a matter of fact, it

is true. With a little bit of effort, one may establish the lower bound. We leave it as an exercise.

Substantial partial credit was given for proposing a correct strategy and analysing the competitive

ratio.

Common Pitfalls

A handful of students, wrongly, proved doubling strategy to be 2-competitive. A common error has

been the failure to identify the worst case for their strategy. Some students considered arithmetic

sequences. Even though, these sequences are correct strategies. These schemes have a competitive

ratio linear in X – which is not good enough.
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