
Design and Analysis of Algorithms February 29, 2012

Massachusetts Institute of Technology 6.046J/18.410J

Profs. Dana Moshkovitz and Bruce Tidor Handout 10

Problem Set 3 Solutions

This problem set is due at 9:00pm on Wednesday, February 29, 2012.

Problem 3-1. Electric Potential Problem

According to Coulomb’s Law, the electric potential created by a point charge q, at a distance r

from the charge, is:
1 q

VE =
4πǫ0 r

There are n charges in a square uniform grid of m×m points. For i = 1, 2, . . . , n, the charge i has

a charge value qi and is located at grid point (xi, yi), where xi and yi are integers 0 ≤ xi, yi < m.

For each grid point (x, y) not occupied by a charge, the effective electric potential is:

n
1 q

V (x, y) =
4πǫ0

∑
i

.
x x 2

i y y 2
ii

√
(+ (

=1
−) −)

The electric potential problem is to find the effective electric potential at each of the m2 − n grid

points unoccupied by a charge.

(a) Describe a simple O(m2n) time algorithm to solve the problem.

Solution: The following naive algorithm iterates through all of the points (x, y) on

the m × m grid and computes the electric potential at that point according to the

formula given above:

ELECTRIC-POTENTIAL-NAIVE(m, x, y, q)

1 create an m × m table V // Θ(m2)
2 for x = 0 to m − 1 // Θ(m) iterations

3 for y = 0 to m − 1 // Θ(m) iterations

4 V (x, y) = 0 // Θ(1)
5 for i = 1 to n // Θ(n) iterations

6 if xi == x and yi == y // Θ(1)
7 V (x, y) = NIL // Θ(1)
8 else

9 V (x, y) = V (x, y) + 1 qi //
4πǫ0

· √
(x−xi)2+(y−yi)2

Θ(1)

10 return V

2 Handout 10: Problem Set 3 Solutions

The total runtime of this code is Θ(m2) + Θ(m) · Θ(m) · (Θ(1) + Θ(n) · Θ(1)) =
Θ(m2) + Θ(m2) · (Θ(1) + Θ(n)) = Θ(m2n).

(b) L

Z
et 2m−1 = {0, 1, . . . , 2m − 2}. Find two functions f, g : 2m−1 × 2m−1 →

such that the potential at (x, y) equals the convolution of f and g:

V (x, y) = (f ⊗ g)(x, y)
2m−2

=
∑ 2∑m−2

f(x′, y′) · g(x − x′, y − y′) .

x′=0 y′=0

Importantly, in this definition x − x′ and y − y′ are computed in the additive group

2m−1, which is a fancy way of saying they are computed modulo 2m − 1.

Solution: We will use f to contain the locations of the charges, multiplied by a

constant:



qi
if there is a charge qi with (x , yi) =

4
i (x, y)

πǫ
f(0

x, y) =
 0 if (x, y) has no charge

0 if (x, y) lies outside the m × m grid

To match up with the formula for V (x, y), we

Z
want g(x, y) to take as input the coor-

dinate differences between a pair of points and we want g(x, y) to produce the inverse

of the distance between the original two points. However, we cannot simply use the

formula for the inverse distance, because the numbers passed into g will be taken mod

2m−1. So any negative difference in coordinates will wrap around to become a value

> m − 1. Squaring that positive value will not produce the correct result. To handle

this correctly, we need to map the numbers in 2m−1 so that any number greater than

m − 1 becomes negative again. We do this with the following intermediate function:

r(z) =

{
z if z ≤ m − 1

z − (2m − 1) otherwise

With this definition in place, we can now write a definition for g:


 √ 1

if (x, y) = (0, 0)
g(x, y) =  (r(x))2 + (r(y))2

0 otherwise

To see why this is correct, we must plug our formulae for f and g into the equation

for convolution:

2m−2 2m−2

(f ⊗ g)(x, y) =
∑ ∑

f(x′, y′) g

x′=0 y′ 0

· (x− x′, y − y′)
=

Z Z Z R

6

Handout 10: Problem Set 3 Solutions 3

First, note that f(x′, y′) is only nonzero at the locations (xi, yi) on the grid that have

some charge qi. In other words, we can rewrite the summation in the following way:

n

(f ⊗ g)(x, y) =
∑

f(xi, yi)
i=1

· g(x − xi, y − yi)

n
q

=
i

g(x x y
4

i, yi)
πǫ0

i=1

· − −

The differences (x − xi) and (y

∑

− yi) will be taken mod 2m − 1 before they are

passed into g. However, once they are passed into g, g will undo the effect of the

modulus by passing those differences through the function r, and so the final formula

for (f ⊗ g)(x, y) will be:

(f

Hence, we c

potential at a

For positiveZintegeZ
⊗ =

∑n
qi 1

g)(x, y) · = V (x, y)
4πǫ0

√
(x − x y= i)2 + (− y 2

i 1 i)

an use the convolution of these functions to compute the effective electric

ll points that do not contain charges.

r k, thCe discrete Fourier transform of a function h : Zk × Zk → R is the

function ĥ : k × k → defined as follows:

k 1

̂ 1
−1

() =
∑∑k−

() −ax−by
h a, b h x, y ω

k2 k ,

x=0 y=0

where ωk is a kth root of unity.

The corresponding inverse discrete Fourier Z Z C
Z
tran

Z
sform of ĥ : k × k → is defined as follows:

k−1 k−1

h(a
x, y) =

∑

a=0

∑
h(a, b) x+by

ωk .

b=0

(c) Prove that for any two functions f, g : k× k

̂

→ R and for any point (a, b) ∈ Zk×Zk,

we have
̂(f ⊗ g)(a, b) = k2 · f(a, b) · g(a, b) .

Solution: To see that this is true, we begin by

̂

writing

̂

out the formula for k2 ·f(a, b) ·
ĝ(a, b) and substituting in the definition for f̂(a, b):

∑k1
)

∑k−1

̂

2 · (̂ · ̂() = 2 ·
(

−1

(′ ′) · −ax′
−by′

k f a, b g a, b k f x , y ω
k2 k g

x′=0 y′=0

)

· (a, b)

k−1 k−1

=
∑∑(

() · ax′ by′

f x′, y′ ω
− −

̂

k

x′=0 y′=0

· ĝ(a, b)
)

4 Handout 10: Problem Set 3 Solutions

Next we want to substitute for g(a, b). But to more closely match the formula for

convolution, we would like to rewrite g(a, b) to include the term g(x− x′, y − y′). To

do so, we set s = x − x′ and t

of s and t, then substitute in the

̂

= y −
̂

y′. We will write the formula for g in terms

values s = x − x′ and t = y − y′. This means that

x = s + x′ and y = t + y′.

k 1 k 1

̂ 1 ∑−
b

∑−
g(a,) = g(s as−bt

k2

Z
, t) · ω−

k

s=0 t=0

x′+k
1

−1

=
∑ y′∑+k−1

− ′ − − −′ · a(
()

x x′)−b(y−y′)
g x x , y y ω

k2 k

x=x′+0 y=y′+0

The values x and y are drawn from k, so the values will wrap around. The order of

the summation doesn’t matter. So we can rewrite those summations as sums from 0 to

k − 1:

k 1

̂ 1 ∑−1∑k−
(′) (′)

g(a, b) = g(
a

x x′, y y′)
− x−x −b y−y

ω
k2 k

x=0 y=0

− − ·

When we plug this formula for ĝ(a, b) into the formula for k2 · f̂(a, b) · g(a, b), we get

the following:

k2

̂

· f̂(a, b)

− −

·
k 1 1

=
x

∑

′=0 y

∑k

′=0

(
ĝ(a, b)

k

y′
′

(
1 k 1

′ −ax′
−b 1 ∑−

)
∑−

(′)
f(

a y
x , y ωk − (x y

g(x x′ x′) b
, y

−

k2
x=0 y=

− y
− − −′)ωk

0

))

1
1

=
∑k− ∑k−1 ∑k−1∑k−1 (

− − ′ (
(′ ′) ax′

−by′

(
a x x′) b(y y′)

f x , y ωk g x x , y y
−′)ω

− − −

k2 k

x′=0 y′=0 x=0 y=0

−
)

∑k−1∑k−1 ∑k−1 k 1
1

−

=
(
f(x′, y′)g(x− x′, y − ′ ′ ′ ′

y′ − (
)

ax −by
ω

−a x−x)−b(y−y)

k2 k

x=0 y=0 x′=0 y′=0

)

∑k−1∑k−1
(
∑k−

∑

1 k−1
1

= (′ ′) ax b
f x , y g(y

x x′, y y′) ω
− −

k2 k

x=0 y=0 x′=0 y

∑

′=0

− −
)

k
1

−1

=
k2

∑

x=0

̂

∑k−1

(f ⊗ g)(x, y) · ω−ax−by

k

y=0

= (f ⊗ g)(a, b)

This is precisely what we wanted to show.

Handout 10: Problem Set 3 Solutions 5

(d) Design an O(k2 lg k) time algorithm to compute the discrete Fourier transform and its

inverse.

Solution: For the purposes of this problem, we will be using the definition of the

FFT that matches the definition more commonly used outside of CS — the inverse of

the FFT seen in class. More formally, we say that ĥ is the one-dimensional FFT of h

if:

̂ 1
h(a) = ·

∑
h(x) · ω−ax

k k

x

Hence, for this problem, the result h of inverting the FFT on ĥ is defined to be:

h(a) =
∑

h(x)
x

· ωax
k

With these definitions in place, we can der

̂

ive algorithms for two-dimensional FFT

using the one-dimensional algorithm as a black box.

The algorithm that we will use to compute the two-dimensional FFT involves reducing

the problem to c

Z
omputing Θ(k) different FFTs for one-dimensional functions. More

specifically, we use the following algorithm to compute the two-dimensional FFT:

1. Use f(x, y) to create k different functions fx that operate on the domain Zk. The

function fx(y) is defined to be f(x, y).

2. Run one-dimensional FFT k times,

Z
oZnce on each function fx. This yields k func-

tions f̂x that operate on the domain k.

3. Use the computed functions f̂x, to create k different functions gb that operate on

the domain k. The function gb(x) is defined to be fx(b).

4. Run one-dimensional FFT k times, once on each fun

̂
ction gb. This yields k func-

tions ĝb that operate on the domain k.

5. Define the function f such that f(a, b) = gb(a). Return the function f .

We begin by analyzing the runtime of this algorithm. Step 1 requires us to create k

functions with domains o

̂

f size k, an

̂

d calculat

̂

ing each value requires Θ(

̂

1) time, so

the total runtime required is Θ(k2). Step 2 requires us to run FFT k times, each time

on a function with domain k. Each time we run FFT requires Θ(k log k) time, for

a total of Θ(k2 log k). Step 3, like Step 1, requires us to construct k functions with

domains of size k. Calculating each value only requires a lookup, for a total of Θ(k2)
time. Step 4 has the same runtime as Step 2, Θ(k2 log k). Finally, step 5 requires us to

construct a function with domain of size k2, and each value of the function is looked

up elsewhere. So the total runtime is Θ(k2 log k), just as we wanted.

Next, we must examine the correctness of this algorithm. We may do so by starting

with step 5 and gradually expanding the definition of f̂ using the definition of the FFT

6 Handout 10: Problem Set 3 Solutions

and the equalities resulting from the various steps in our algorithm.

f̂(a, b) = ĝb(a) (definition from step 5)

k
1

−1

=
∑

gb(x) · ω−ax
k (FFT performed in step 4)

k
x=0

k
1

−1

=
∑

f̂x(b) · ω−ax
k (definition from step 3)

k
x=0

k
1

−1

=
∑

(
k

1 ∑−1

) · ω−by
f (y

)

· ω−ax
x k k (FFT performed in step 2)

k k
x=0 y=0

k
1

−1

=
∑∑k−1

f(x, y) −by
ω ω−ax i

k k n on f
2 k (defi ti rom step 1)

x=0 y=0

· ·

k−1 k−1
1

=
∑∑

f(ax by
x, y) ω

− −

ar
k2 k (re ranging terms)

x=0 y=0

·

This is precisely the definition of two-dimensional convolution, so our algorithm will

compute the correct results.

How can we compute the inverse two-dimensional FFT? It’s possible to compute it

by using ω−1
k instead of ωk in all of the FFT calculations, and multiplying by a con-

stant. For completeness, we give a more detailed algorithm, closely resembling the

algorithm for two-dimensional FFT. More formally,

Z
the following algorithm can be

used to compute the inverse FFT of a two-dimensional function f :

1. Use f̂(x, y)

Z
to create k different functions fx that operate on

̂

the domain Zk. The

function f̂x(y) is defined to be f(x, y).

2. Run the one-dimensional inverse FFT k ti

̂

mes, once on each function fx. This

yields k functions fx that operat

̂

e on the domain k.

3. Use the computed functions fx, to cZreate k different functions ĝb that op

̂

erate on

the domain k. The function ĝb(x) is defined to be fx(b).

4. Run one-dimensional FFT k times, once on each function gb. This yields k func-

tions gb that operate on the domain k.

5. Define the function f such that f(a, b) = gb(a). Return the

̂

function f .

The runtime analysis of this function proceeds analogously to the runtime analysis of

the FFT algorithm given above, for a total runtime of Θ(k2 log k).

Handout 10: Problem Set 3 Solutions 7

We use a similar technique to show the correctness of our algorithm:

f(a, b) = gb(a) (definition from step 5)

k−1

=
∑

g)
x=

b̂(x
0

· ωax
k (inverse FFT in step 4)

∑k−1

= fx(b) · ωax
k (definition from step 3)

x=0

k−1

=
∑

(
∑k−1

f̂x(y) · by
ωk

)

· ωax
k (inverse FFT in step 2)

x=0 y=0

k−1

=
∑∑k−1

(b
f̂

y
x, y) · ωk · ωax

k (definition from step 1)

x=0 y=0

k−1

=
∑ k−1

b
f(ax+ y

x, y) ωk (rearranging terms)

x=0

∑

y=0

̂ ·

So we have correctly computed the inverse FFT of f .

(e) Design an O(m2 lg m) time algorithm to solve the el

̂

ectric potential problem for a grid

of size m × m.

Solution: The following algorithm can be used to compute V (x, y) for all points

(x, y) not occupied by a charge.

1. Compute the values of f and g, as defined in part (b), on Z2m−1×Z2m−1. This re-

quires the computation of Θ((2m−1)2) = Θ(m2) values, each of which requires

Θ(1) time to compute.

2. Compute the values of f̂ and g using the two-dimensional FFT algorithm from

part (d). This requires Θ(m2 log m) time in total.

3. Compute the values of ĥ, define

̂

d to be ĥ(x, y) = f̂(x, y) · ĝ(x, y) for all values of

x and y. This requires the computation of Θ((2m−1)2) = Θ(m2) values, each of

which is the product of two values that have already been computed. As a result,

this step requires Θ(m2) time.

4. Compute the values of h using the two-dimensional inverse FFT algorithm from

part (d). This requires Θ(m2 log m) time.

The results in part (c) show that steps 2, 3, and 4 are computing the convolution of

f and g. We showed in part (b) that the convolution of f and g gives us V (x, y) for

all (x, y) not occupied by a charge. Therefore, this algorithm will compute V (x, y)
correctly. The total runtime of this algorithm is Θ(m2 log m).

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

