
Design and Analysis of Algorithms February 21, 2012

Massachusetts Institute of Technology 6.046J/18.410J

Profs. Dana Moshkovitz and Bruce Tidor Handout 7

Problem Set 1 Solutions

This problem set is due at 9:00pm on Wednesday, February 15, 2012.

Problem 1-1. Variations of Median Select

Recall from lecture the worst case linear time algorithm for selecting the ith smallest element from

a set S of n distinct elements. In class we organized the elements into groups of 5, in this problem

we wil analyze the behavior of the algorithm by picking different sizes for the groups.

(a) If we choose the group sizes to be 7, and picking the median element from each group

of 7, repeat the analysis done in CLRS and write down the recurrence relation for

T (n). Solve the recurrence using the substitution method and prove its correctness

using induction, in particular, state the assumptions you make about the base cases

(for example, for groups of 5, we assumed T (n) ≤ cn for n ≤ 140).

Solution:

We divide the n elements of the input array into ⌊n/7⌋ groups of 7 elements each and

at most one other group containing the remaining elements.

At least half of the medians for these groups are greater than or equal to the median-

of-medians x. With the exception of the one group that contains fewer than 7 elements

and the group containing x, each of the ⌈n/7⌉ groups has at least 4 elements greater

than x.

So, the number of elements greater than x is at least

4

(⌈

1

2

⌈⌈n
8

7

⌉⌉

⌉

2n
− 2

)

≥ −
7

This means that the number of elements less than x is at most:

n−

(

2n
− 8

7

)

5n
= + 8

7

By symmetry, the number of elements exceeding x is at most 5n

7
+ 8. The cost of

dividing the n elements into groups, finding the median of each, and partitioning the

input array is O(n) The cost of recursively calling SELECT to compute the median of

⌈n/7⌉ medians is T (
⌈

n

7

⌉

). The cost of running SELECT recursively on the elements

below or above the pivot is T (5n
7
+ 8). Hence, we obtain the following recurrence

relation:
)

T (n)

{

O(1 : n < 126
≤

T (
⌈

n

7

⌉

) + T (5n
7
+ 8) +O(n) : n ≥ 126

2 Handout 7: Problem Set 1 Solutions

In the derivation below it will become clear that it is sufficient to have the cutoff be

any integer strictly greater than 63, but it is mathematically convenient to make it 126.

To solve the recurrence using the substitution method first assume that the running

time is linear. Then we show that T (n) ≤ cn for sufficiently large c and all n ≥ 126:

T (n) ≤ c
⌈n⌉

+ c

(

5n
+ 8

)

+ an
7 7

cn 5nc
≤ + c+ + 8c+ an

7 7
6cn

= + 9c+ an
7

−cn
= cn+

(

+ 9c+ an
7

)

The latter is at most cn if −cn

7
+ 9c+ an ≤ 0.

Since n ≥ 126, this is equivalent to:

7an
c ≥ ≥ 14a. (1)

n− 63

Base Case

n
T (126) ≤ T

(⌈

7

⌉)

+ T

(

5n
+ 8

7

)

+O(n)

≤ O(1) +O(1) + an

≤ 2b+ an

= 2b+ 126a ≤ cn = 126c

So, choosing c ≥ a+ b

63
will satisfy the base case.

Hence, for c ≥ 14a + b and n ≥ 126: T (n) ≤ cn, satisfying both the base and

inductive cases.

(b) What happens if we choose the group size to be 4? Since the median of 4 elements is

somewhat ambiguous, assume that we always choose the *lower median* from every

group, that is, the 2nd smallest element. Again, write down the recurrence relation for

T (n), solve it using the substitution method and prove its correctness using induction.

Again stating your assumptions.

Solution:

With groups of size 4, at least half of the medians are greater than or equal to the

median-of-medians x. With the exception of the one group that contains fewer than 4

Handout 7: Problem Set 1 Solutions 3

elements and the group containing x, each of the ⌈n/4⌉ groups has at least 3 elements

greater than x.

The number of elements greater than x is at least

3

(⌈

1

2

⌈⌈n

4

⌉⌉

⌉

− 2

)

3n
≥ − 6

8

This means that the number of elements less than x is at most:

n−

(

3n
− 6

8

)

5n
= + 8

8
.

Each of the ⌈n/4⌉ groups except for the group containing x and the residual group,

has at least 2 elements less than x. So, the number of elements less than x is at least

2

(⌈

1

2

⌈⌈n

4

⌉⌉

⌉

− 2

)

n
≥ − 4

4

This means that the number of elements greater than x is at most:

n−
(n

− 4
4

) 3n
= + 4

4
.

In the worst case scenario, the algorithm will keep recursing on the bigger partition.

So, the recurrence is as follows:

{

O(1) : n < 512
T (n) ≤

T (n

4
) + T (3n

4
+ 4) +O(n) : n ≥ 512

The solution to this recurrence

⌈

is

⌉

no longer linear. We will prove that it is O(n lg(n))
by the substitution method. We show that for n ≥ 512 and sufficiently large c, T (n) ≤
nc lg(n):

T (n) ≤ T (
⌈n

4

⌉

) + T

(

3n
+ 4

4

)

+O(n)

n n 3n 3n
≤ c(+ 1)(lg(+ 1)) + c(+ 4) lg(+ 4) + an

4 4 4 4
n n 3n

≤ c(+ 1)(lg()) + c(+ 4) lg(n) + an
4 2 4
n 3n

≤ c(+ 1)(lg(n)− 1) + c(+ 4) lg(n) + an
4 4
n n 3cn

≤ c(lg(n)− + lg(n)− 1) + lg(n) + 4c lg(n) + an
4 4 4

cn
≤ cn lg(n) + (5c lg(n)− − c+ an)

4
n

≤ cn lg(n) + (c(5 lg(n)− − 1) + an)
4

4 Handout 7: Problem Set 1 Solutions

The latter term is at most cn lg(n) if c(5 lgn − n

4
− 1) + an ≤ 0. Making use of the

fact that for n ≥ 512, n+ 4− 20 lgn > 0, we can rewrite the inequality as follows:

n
0 ≥ c(5 lgn− − 1) + an

4
n

−an ≥ c(5 lgn− − 1)
4

4an
c ≥

n+ 4− 20 lgn
(2)

Also, note that for n ≥ 512, n + 8 − 40 lgn > 0. Hence, now if we choose c ≥ 8a,

then

c ≥ 8a
8an

c ≥
n

8an
≥

n+ (n + 8− 40 lgn)
8an

=
2n+ 8− 40 lgn

4an
=

n+ 4− 20 lgn

Base Case

(⌈n⌉)
(

3n
T (512) ≤ T + T + 4

4 4

)

+O(n)

≤ O(1) +O(1) + an

≤ 2b+ an

= 2b+ 512a ≤ cn = 512c

So, choosing c ≥ a+ b

256
will satisfy the base case.

This proves that for n ≥ 512 and c ≥ 8a+b, T (n) ≤ cn lg(n) satisfying both the base

and inductive cases.

Problem 1-2. Land for sale in one dimension

(a) In 1-D land, everybody lives in a one dimensional region. You own a stretch of land in

the shape of a circle, and would like to sell it to n customers. Each of these customers

Handout 7: Problem Set 1 Solutions 5

is interested in a contiguous segment on the perimeter (ie. an arc), which can be

represented in polar coordinates. For example, customer i wants to have θi1 to θi2 on

the circle. Unfortunately, many of these arcs overlap, and you cannot sell a portion

of a customer’s request. Devise an algorithm to maximize the number of customers’

requests you can fulfill.

Solution:

The challenge of the circular-arc scheduling problem lies in being able to “linearize”

the input and exploit the unweighted greedy activity scheduling problem covered in

lecture to obtain an optimal solution.

To “linearize” the input we need to determine an appropriate breakpoint at which to

cut the circle without affecting the optimality of the solution to the modified problem.

Choosing an arbitrary cutpoint on the circle may invalidate the scheduling of optimal

segments crossing that boundary.

Now, suppose we are provided with extra information – we are given αk2, the end-

point of an activity in an optimal schedule A⋆ = (α11, α12) . . . (αk1, αk2). Then we

can conclude that any segments crossing αk2 are not part of an optimal solution, and

we can safely choose αk2 as the initial condition in our linear scheduling algorithm,

discarding any overlapping segments from the input. We don’t actually need αk2 if

we run the linear scheduling algorithm for every possible choice of segment endpoint.

One of the instantiations of the linear scheduling problem is guaranteed to have αk2 as

an intial condition, yielding an optimal solution.

1. Algorithm Description We provide an O(n2) algorithm for this problem, that

uses the greedy unweighted activity scheduling algorithm presented in class as a sub-

routine.

Assume that the input consists of n ordered pairs representing the start and end points

of the arcs in polar coordinates: {(θi1, θi2)}, for i = 1 . . . n. Our algorithm first

sorts the list of ordered pairs by the second coordinate. Then going through each of

the sorted list of segments, we run the greedy unweighted scheduling algorithm as a

subroutine on segments from the current segment end time onwards.

The input to the linearized greedy scheduling algorithm is already sorted, and as part

of its execution the subroutine discards segments that overlap the starting point from

which the algorithm is executed.

In order to be able to recover an optimal scheduling, we keep track of the set of

segments used for each of the executions of the linearized scheduling subroutine.

At termination we return the set with the maximum number of segments.

Remarks Note that an O(n lgn) solution has been identified in recent literature, but

an O(n2) algorithm is sufficient to receive full credit.

6 Handout 7: Problem Set 1 Solutions

2. Worked Out Example See Figure 1 below.1

3. Correctness Proof The circular scheduling problem can be reduced to the lin-

earized scheduling problem given that the cut point on the circle corresponds to the

end time for one of the segments in an optimal solution. Since we run the linearized

algorithm for all possible cutpoint choices, one of these will have the appropriate ini-

tial condition. So, the correctness proof of the original algorithm is then reduced to

the correctness proof for the greedy linear scheduling algorithm described in class.

4. Running time analysis The algorithm runs in O(n2) time. We only need to sort

the set of ordered pairs by the endpoint of each segment once, taking O(n lgn) time.

Then for each for the n segment endpoints we discard segments overlapping with the

start point and execute the greedy selection subroutine in linear time. This contributes

O(n2) time. Finding the maximum among the n solutions runs in linear time. So, the

overall time complexity is O(n2).

(b) You are a firm believer in the free market and competition. So, in addition to each

customer giving you an arc that they would like, he also offers a price. However, you

still cannot sell a portion of any request. Devise an algorithm to maximise your profit.

Solution:

1. Algorithm Description Here the algorithm uses the weighted activity scheduling

dynamic program presented in class as a subroutine in a manner analogous to the

previous problem. The overall complexity for the algorithm is O(n2).

The algorithm first sorts all of the angles corresponding to the start and end points

of the segments in ascending order. Then it iterates through each possible segment

end point in ascending order, removes segments overlapping with that boundary, and

executes the linear weighted scheduling dynamic program on the previously sorted

input from the boundary onwards.

In addition to the optimal cumulative profit for each of the subroutine executions,

segment choice backpointers are kept allowing for the recovery of an optimal solution

2. Worked Out Example See Figure 2 below.2

1Example courtesy Lauren Procz.
2Example courtesy Lauren Procz.

Handout 7: Problem Set 1 Solutions 7

3. Correctness Similarly to 2b, the problem of finding the set of requests to fulfill to

obtain maximum profit for circular arc segment inputs can be reduced to the problem

of finding the ‘linearized ”schedule” with the maximum cumulative weight, using the

dynamic programming algorithm presented in lecture. Again, this is due to the fact

that one of the executions of the subroutine will have for an initial starting point,

the endpoint that corresponds to the endpoint for one of the segments in an optimal

solution. So, we simply refer to the correctness proof for the linearized weighted

dynamic programming algorithm.

4. Running time analysis Sorting all of the endpoints takes O(n lgn) time. We

only need to do this once. For each of the n boundaries, we remove the overlapping

segments in O(n) time and run the dynamic program on the 2n angles in linear time.

This requires O(n2) time. Finding the solution with the maximum profit among the

various runs of the subroutine takes linear time. the overall time is O(n2).

(c) You have aquired a new area in the shape of a cross. Once again, there are n customers

wanting to pay a price for a contiguous 1-D region on the cross (which could be a line

segment, a “T” segment, or a “cross” segment). Like before, these requested regions

overlap and can only be sold in its entirety. Devise an algorithm to maximize your

profit.

Solution:

We will present a Θ (N lgN) algorithm.3

Description of Algorithm

First, we look through the requests, and separate them into five categories:

• requests that contain the center of the cross

• requests that contain only the northern arm of the cross

• requests that contain only the eastern arm of the cross

• requests that contain only the southern arm of the cross

• requests that contain only the western arm of the cross

Then, we do dynamic programming on each of the arms to calculate the maximum

profit we can make by selling tips of the arms. To do this, we sort all of the starting

indices si and ending indices ei of the requests on an arm, and iterate through them

starting at the end of the arm. If we let p[j] represent the maximum profit possible

by selling the end of the arm up to index j, and if we let ci represent the price that

customer i is willing to pay, then we have the recurrence relation:

{

p[j − 1] if j = s
p[j] = i

max (p[j − 1], p[si − 1] + ci) if j = ei

3Sample solution reproduced with permission from Kerry Xing.

8 Handout 7: Problem Set 1 Solutions

Using this recurrence relation, we can compute the values of p[j] for each arm, starting

with a base case of p[0] = 0. We will store the values of p[j] for each arm so that we

can use them later.

Then, we iterate through the requests that contain the center of the cross. For each

request, we consider accomodating it and selling the remaining arms for the best profit

possible. Out of all these requests, we find the maximum profit possible, and report it

as our answer. Note however, that we should also consider an empty request so that

we will be able to consider selling only the arms of the cross.

Illustrative Example

Consider the situation above, in which we have a cross that has arms of length 3. We

have four customers, who are willing to pay different prices for different sections of

land.

When we separate the requests into categories, we see that request 4 contains the

center of the cross, and all the other requests contain only the western arm.

When we run dynamic programming on each of the arms of the cross, and we get the

following results:

Now, when we look at customer 4’s request, we see that the remaining land can be

sold for $2, so we can make $11 if we satisfy customer 4’s request. When we look at

the empty request (in which we don’t sell the center of the cross), we see that the 4

arms of the cross can be sold for $9. Thus, we see that the optimal solution is to sell

to customers 1 and 4 for $11.

Proof of Correctness

Lemma 1 For each arm, the dynamic programming algorithm will correctly compute

the values of p[j] described above.

PROOF. To do this, we will prove a loop invariant: p[j] is the maximum profit possi-

ble by selling the tip of the arm up to index j.

Our Cross Customer 1: ($2) Customer 2: ($8) Customer 3: ($9) Customer 4: ($10)

Image by MIT OpenCourseWare.

$0 $0 $0 $0$0$0 $0

$0
$0
$0
$0

$0
$0
$0

$2 $9

Image by MIT OpenCourseWare.

Handout 7: Problem Set 1 Solutions

During initialization, p[0] = 0, so the loop invariant holds.

For each iteration of the dynamic programming algorithm, we use the recurrence re-

9

lation

p[j] =

{

p[j − 1] if j = si
max (p[j − 1], p[si i i

If j is a starting index, then we can’t have enough land to accomodate the request yet

(since we are only selling the land from the end of the arm to j at this time). Thus, we

must have p[j] = p[j − 1].

If j is an ending index, then we have enough land to accomodate the request. If we

fulfill the request, we will make ci profit, and we only have the land from the end of

the arm to si−1 remaining, since the land from si to ei was sold. Thus, our maximum

profit if we sell to customer i is p[si − 1] + ci. On the other hand, if we don’t fulfill

the request, our maximum profit would be p[j − 1], as in the previous case. Thus, the

maximum profit p[j] we can make is max (p[j − 1], p[si − 1] + ci).

In either case, we see that the loop invariant is maintained, so the computed values of

p[j] are correct.

Now, we will show that the algorithm will compute the optimal profit. We will con-

sider two cases:

Case 1: The optimal solution satisfies a request that contains the center of the cross.

In this case, our algorithm will have considered the same request (that contained the

center of the cross). Since the algorithm knows how to sell the remaining pieces of

land in the optimal way, the algorithm will return an optimal solution.

Case 2: The optimal solution does not satisfy a request that contains the center of the

cross.

In this case, our algorithm will have considered the empty request and considered

selling each arm of the cross in the optimal way. Thus, our algorithm will return an

optimal solution.

In all cases, we see that our algorithm will return an optimal solution, so we are done.

Running Time Analysis

First, we see that separating the requests into five categories takes Θ (N) time. Next,

we see that running dynamic programming on each arm takes Θ (N lgN) time, be-

cause we have to sort the starting and ending indices for each request (which takes

Θ (N lgN) time) and applying the recurrence relation for each index (which takes

Θ (N) time). Finally, we see that trying out all the requests that contain the center

of the cross (and the empty request) takes Θ (N) time. Thus, we see that the total

running time is Θ (N lgN).

− 1] + c) if j = e

10 Handout 7: Problem Set 1 Solutions

(a) Initial State (b) Excluded Arc Set R = {1, 2}: (c) Find solution s. Sort arcs by θi2.

Choose arc with minimum θi2 to be in

s. s = {3}.

(d) Finish running the scheduling al-

gorithm described in class. s =
{3, 5, 7, 8, 10, 11}, |s| = 6.

(e) Now find a solution with alter-

native start points. Start with arc 1.

s1 = {1}:

(f) s1 = {1, 4, 7, 8, 10}, |s1| = 5.

|s| > |s1|, so we need to keep iter-

ating through arcs in R.

(g) Continue running the linear

scheduling algorithm for dif-

ferent time starts. For arc 2.

s2 = {2, 3, 5, 7, 8, 10, 12}, |s2| = 7.

|s| < |s2|, so return solution s2.

Figure 1: Worked out Example for Problem 2a

Courtesy of Lauren Procz. Used with permission.

Handout 7: Problem Set 1 Solutions 11

(a) Initial State. Start and end points

are numbered (in squares) in sorted

order based on an arbitrary “0” an-

gle reference point. Numbers not in

squares are arc costs.

(b) Iterate through n = 3 arcs. Start

with the highlighted arc. That arc is

now fixed. We want to use dynamic

programming to find the maximum

weight solution on the circle segment

from point 2 to point 0 (counterclock-

wise). w(s1) = maximum weight so-

lution on segment +w(1), where w is

a weight function.

(c) Ignore this point because it is part

of an arc that intersects the fixed arc i.

(d) Add the green edge to solution s1.

The algorithm has finished consider-

ing all points on the circle segment.

w(s1) = 2.

(e) Fix the next arc in solution s2. All

points on the circle segment are part

of arcs that intersect the blue arc, so

we ignore all of them. We’re done

with this solution: w(s2) = 3.

(f) We end up with w(s3) = 2. (g) Return s2 because it has the

largest weight of all 3 solutions.

Figure 2: Worked out Example for Problem 2b

Courtesy of Lauren Procz. Used with permission.

MIT OpenCourseWare
http://ocw.mit.edu

6.046J / 18.410J Design and Analysis of Algorithms
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

