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6.080/6.089 GITCS May 13, 2008 

Lecture 24 
Lecturer: Scott Aaronson Scribe: Chris Granade 

1 Quantum Algorithms 

Of course the real question is: can quantum computers actually do something more efficiently than 
classical computers? In this lecture, we’ll see why the modern consensus is that they can. 

1.1 Computing the XOR of Two Bits 

We’ll first see an algorithm due to Deutsch and Jozsa. Even though this algorithm is trivial by 
modern standards, it gave the first example where a quantum algorithm could provably solve a 
problem using fewer resources than a classical algorithm. 

Suppose we’re given access to a Boolean function f : {0, 1} → {0, 1}. And suupose we want to 
compute f(0) ⊕ f(1), the XOR of f(0) and f(1). Classically, how many times would we need to 
evaluate f? It’s clear that the answer is twice: knowing only f(0) or f(1) tells us exactly nothing 
about their XOR. 

So what about in the quantum case? Well, first we need to say what it even means to evaluate 
f . Since this is a quantum algorithm we’re talking about, we should be able to evaluate both 
inputs, f(0) and f(1) in quantum superposition. But we have to do so in a reversible way. For 
example, we can’t map the state |x, b� to |x, f(x)� (overwriting b), since that wouldn’t be unitary. 

The standard solution is that querying f means applying a unitary transformation that maps 
|x, y� → |x, y ⊕ f(x)�. Is it reversible? Yeah. Applying it twice gets you back to where you started. 
I claim we can compute f(0) ⊕ f(1) using just a single one of these operations. How? 
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Figure 1: Finding f(0) ⊕ f(1) in one query. 

In the circuit above, the effect of the gates before Uf is to prepare an initial state |ψ0�: 

1 |ψ0� = |+� |−� = 
2

[|0� + |1�] [|0� − |1�] 

If you think of the effect of Uf on the first qubit in this state, it’s just to negate the amplitude if 
f(0) = f(1)! Thus, Uf produces +� |−� if f(0) = f(1) and |−� |−� otherwise. The final Hadamard 
gate transforms the first qubit back into the computational basis, so that we measure 1 if and only 
if f(0) = f(1). 

In particular, this means that if you want to compute the XOR of N bits with a quantum 
computer, you can do so using N/2 queries, as follows: first divide the bits into N/2 pairs of bits, 
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then run the above algorithm on each pair, and finally output the XOR of the results. Of course, 
this is only a constant-factor speedup, but it’s a harbinger of much more impressive speedups to 
come. 

1.2 Simon’s Algorithm 

Say you’re given a Boolean function f : {0, 1}n → {0, 1}n . You’re promised there exists a “secret 
string” s such that f(x) = f(y) if and only if y = x ⊕ s, where ⊕ denotes a sum mod 2. The 
problem is to find s by querying f as few times as possible. 

How many queries would a classical randomized algorithm need to solve this problem? Some­
thing very similar was on your problem set! Right, 2n/2. This is basically just the birthday paradox. 
Until it happens to find an x, y pair such that f(x) = f(y), your algorithm is basically just “shoot­
ing in the dark”; it has essentially no information about s. And after T queries, the probability of 
having found an x, y pair such that f(x) = f(y) is at most T 2/(2n − 1) (why?). 

On the other hand, in 1993 Daniel Simon gave a quantum algorithm that solves this problem 
in polynomial time, in fact using only O(n) queries. This was the first example of a problem that a 
quantum computer can solve exponentially faster than a classical one. Admittedly, it’s a contrived 
example (and probably for that reason, Simon’s paper was originally rejected!). But it’s good to 
see for two reasons: first, it led directly to Shor’s factoring algorithm. And second, the easiest way 
to understand Shor’s algorithm is to understand Simon’s algorithm, and then see Shor’s algorithm 
as the same thing with a different underlying group! 

Before proceeding further, though, there’s one thing I want to clear up. I said that Simon’s 
problem was the first known example where quantum computers provably give an exponential 
speedup over classical computers. How is that consistent with what I said before, that we can’t 
prove P =� BQP unconditionally? 

Right, Simon’s problem involves the function f as a “black-box.” In the black-box setting, we 
can prove unconditionally that quantum computers give an exponential speedup over classical ones. 

1.3 RSA 

Alright, so let’s say you want to break the RSA cryptosystem, in order to rob some banks, read 
your ex’s email, whatever. We all know that breaking RSA reduces to finding the prime factors of 
a large integer N . Unfortunately, we also know that “trying all possible divisors in parallel,” and 
then instantly picking the right one, isn’t going to work. Hundreds of popular magazine articles 
notwithstanding, trying everything in parallel just isn’t the sort of thing that a quantum computer 
can do. Sure, in some sense you can “try all possible divisors” – but if you then measure the 
outcome, you’ll get a random potential divisor, which almost certainly won’t be the one you want. 

What this means is that, if we want a fast quantum factoring algorithm, we’re going to have 
to exploit some structure in the factoring problem: in other words, some mathematical property of 
factoring that it doesn’t share with just a generic problem of finding a needle in a haystack. 

Fortunately, the factoring problem has oodles of special properties. What are some examples we 
discussed in class? Right: if I give you a positive integer, you might not know its prime factorization, 
but you do know that it has exactly one factorization! By contrast, if I gave you (say) a Sudoku 
puzzle and asked you to solve it, a priori you’d have no way of knowing whether it had exactly one 
solution, 200 million solutions, or no solutions at all. Of course, knowing that there’s exactly one 
needle in a haystack is still not much help in finding the needle! But this uniqueness is a hint that 
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the factoring problem might have other nice mathematical properties lying around for the picking. 
As it turns out, it does. 

The property we’ll exploit is the reducibility of factoring to another problem, called period-
finding. OK, time for a brief number theory digression. Let’s look at the powers of 2 mod 15: 

2, 4, 8, 1, 2, 4, 8, 1, 2, 4, . . . 

As you can see, taking the powers of 2 mod 15 gives us a periodic sequence, whose period (i.e., how 
far you have to go before it starts repeating) is 4. For another example, let’s look at the powers of 
2 mod 21: 

2, 4, 8, 16, 11, 1, 2, 4, 8, 16, . . . 

This time we get a periodic sequence whose period is 6. 
What’s a general rule that governs what the period will be? We discussed this earlier, when 

we were talking about the RSA cryptosystem! The beautiful pattern, discovered by Euler in the 
1760s, is this. Let N be a product of two prime numbers, p and q, and consider the sequence: 

x mod N, x 2 mod N, x 3 mod N, x 4 mod N, . . . 

Then, provided that x is not divisible by p or q, the above sequence will repeat with some period 
that divides (p − 1)(q − 1). So, for example, if N = 15, then the prime factors of N are p = 3 
and q = 5, so (p − 1)(q − 1) = 8. And indeed, the period of the sequence is 4, which divides 8. If 
N = 21, then p = 3 and q = 7, so (p − 1)(q − 1) = 12. And indeed, the period is 6, which divides 
12. 

Now, I want you to step back and think about what this means. It means that if we can find 
the period of the sequence of powers of x mod N , then we can learn something about the prime 
factors of N . In particular, we can learn a divisor of (p − 1)(q − 1). Now, I’ll admit that’s not 
as good as learning p and q themselves, but grant me that it’s something. Indeed, it’s more than 
something: it turns out that if we could learn several random divisors of (p−1)(q −1) (for example, 
by trying different random values of x), then with high probability we could put those divisors 
together to learn (p − 1)(q − 1) itself. And once we knew (p − 1)(q − 1), we could then use some 
more little tricks to recover p and q, the prime factors we wanted. (This is again in your problem 
set.) 

So what’s the fly in the ointment? Well, even though the sequence of powers modN will 
eventually start repeating itself, the number of steps before it repeats could be almost as large 
as N itself – and N might have hundreds or thousands of digits! This is why finding the period 
doesn’t seem to lead to a fast classical factoring algorithm. 

Aha, but we have a quantum computer! (Or at least, we’re imagining that we do.) So maybe 
there’s still hope. In particular, suppose we could create an enormous quantum superposition over 
all the numbers in our sequence: � 

|r� |x r mod N� 
r 

Then maybe there’s some quantum operation we could perform on that superposition that would 
reveal the period. 

The key point is that we’re no longer trying to find a needle in an exponentially-large haystack, 
something we know is hard even for a quantum computer. Instead, we’re now trying to find the 
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period of a sequence, which is a global property of all the numbers in the sequence taken together. 
And that makes a big difference. 

Look: if you think about quantum computing in terms of “parallel universes” (and whether 
you do or don’t is up to you), there’s no feasible way to detect a single universe that’s different 
from all the rest. Such a lone voice in the wilderness would be drowned out by the vast number of 
suburb-dwelling, Dockers-wearing conformist universes. What one can hope to detect, however, is 
a joint property of all the parallel universes together – a property that can only be revealed by a 
computation to which all the universes contribute 1 . 

So, the task before us is not hopeless! But if we want to get this period-finding idea to work, 
we’ll have to answer two questions: 

1. Using a quantum computer, can we quickly create a superposition over x mod N, x2 mod 
N, x3 mod N, . . . ? 

2. Supposing we did create such a superposition, how would we figure out the period? 

Let’s tackle the first question first. We can certainly create a superposition over all integers r, from 
r1 up to N2 or so. The trouble is, given an r, how do we quickly compute x mod N? We’ve already 

seen the answer: repeated squaring! 
OK, so we can efficiently create a quantum superposition over all pairs of integers of the form 

(r, xrmodN), where r ranges from 1 up to N or so. But then, given a superposition over all the 
elements of a periodic sequence, how do we extract the period of the sequence? 

Well, we’ve finally come to the heart of the matter – the one part of Shor’s quantum algorithm 
that actually depends on quantum mechanics. To get the period out, Shor uses something called the 
quantum Fourier transform, or QFT. My challenge is, how can I explain the QFT to you without 
going through the math? Hmmmm... 

OK, let me try this. Like many computer scientists, I keep extremely odd hours. You know that 
famous experiment where they stick people for weeks in a sealed room without clocks or sunlight, 
and the people gradually shift from a 24-hour day to a 25- or 26- or 28-hour day? Well, that’s just 
ordinary life for me. One day I’ll wake up at 9am, the next day at 11am, the day after that at 
1pm, etc. Indeed, I’ll happily ‘loop all the way around’ if no classes or appointments intervene. 

Now, here’s my question: let’s say I tell you that I woke up at 5pm this afternoon. From that 
fact alone, what can you conclude about how long my “day” is: whether I’m on a 25-hour schedule, 
or a 26.3-hour schedule, or whatever? 

The answer, of course, is not much! I mean, it’s a pretty safe bet that I’m not on a 24-hour 
schedule, since otherwise I’d be waking up in the morning, not 5pm. But almost any other schedule 
– 25 hours, 26 hours, 28 hours, etc. – will necessarily cause me to “loop all around the clock,” so 
that it’d be no surprise to see me get up at 5pm on some particular afternoon. 

Now, though, I want you to imagine that my bedroom wall is covered with analog clocks. These 
are very strange clocks: one of them makes a full revolution every 17 hours, one of them every 26 
hours, one of them every 24.7 hours, and so on for just about every number of hours you can 
imagine. (For simplicity, each clock has only an hour hand, no minute hand.) I also want you to 
imagine that beneath each clock is a posterboard with a thumbtack in it. When I first moved into 
my apartment, each thumbtack was in the middle of its respective board. But now, whenever I 

1For safety reasons, please don’t explain the above to popular writers of the “quantum computing = exponential 
parallelism” school. They might shrivel up like vampires exposed to sunlight. 
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Figure by MIT OpenCourseWare. 

Figure 2: A possible configuration of clocks and pegboards. 

wake up in the “morning,” the first thing I do is to go around my room, and move each thumbtack 
exactly one inch in the direction that the clock hand above it is pointing. 

Now, here’s my new question: by examining the thumbtacks in my room, is it possible to figure 
out what sort of schedule I’m keeping? 

I claim that it is possible. As an example, suppose I was keeping a 26-hour day. Then what 
would happen to the thumbtack below the 24-hour clock? It’s not hard to see that it would 
undergo periodic motion: sure, it would drift around a bit, but after every 12 days it would return 
to the middle of the board where it had started. One morning I’d move the thumbtack an inch 
in this direction, another morning an inch in that, but eventually all these movements in different 
directions would cancel each other out. 

On the other hand – again supposing I was keeping a 26-hour day – what would happen to the 
thumback below the 26-hour clock? Here the answer is different. For as far as the 26-hour clock 
is concerned, I’ve been waking up at exactly the same time each “morning”! Every time I wake 
up, the 26-hour clock is pointing the same direction as it was the last time I woke up. So I’ll keep 
moving the thumbtack one more inch in the same direction, until it’s not even on the posterboard 
at all! 

It follows, then, that just by seeing which thumbtack traveled the farthest from its starting 
point, you could figure out what sort of schedule I was on. In other words, you could infer the 
“period” of the periodic sequence that is my life. 

And that, basically, is the quantum Fourier transform. Well, a little more precisely, the QFT is a 
linear transformation (indeed a unitary transformation) that maps one vector of complex numbers 
to another vector of complex numbers. The input vector has a nonzero entry corresponding to every 
time when I wake up, and zero entries everywhere else. The output vector records the positions of 
the thumbtacks on the posterboards (which one can think of as points on the complex plane). So 
what we get, in the end, is a linear transformation that maps a quantum state encoding a periodic 
sequence, to a quantum state encoding the period of that sequence. 

Another way to think about this is in terms of interference. I mean, the key point about 
quantum mechanics – the thing that makes it different from classical probability theory – is that, 
whereas probabilities are always non-negative, amplitudes in quantum mechanics can be positive, 
negative, or even complex. And because of this, the amplitudes corresponding to different ways of 
getting a particular answer can “interfere destructively” and cancel each other out. 

And that’s exactly what’s going on in Shor’s algorithm. Every “parallel universe” corresponding 
to an element of the sequence contributes some amplitude to every “parallel universe” correspond­
ing to a possible period of the sequence. The catch is that, for all periods other than the “true” 
one, these contributions point in different directions and therefore cancel each other out. Only for 
the “true” period do the contributions from different universes all point in the same direction. And 
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that’s why, when we measure at the end, we’ll find the true period with high probability. 

Questions for next time: 

1. Can QCs be built? 

2. What are the limits of QCs? 

3. Anything beyond QCs? 
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