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Today
• Probabilistic Turing Machines and Probabilistic 

Time Complexity Classes
• Now add a new capability to standard TMs:  

random choice of moves.
• Gives rise to new complexity classes:  BPP and 

RP
• Topics:

– Probabilistic polynomial-time TMs, BPP and RP
– Amplification lemmas
– Example 1:  Primality testing
– Example 2:  Branching-program equivalence
– Relationships between classes

• Reading:
– Sipser Section 10.2



Probabilistic Polynomial-Time Turing 
Machines, BPP and RP



Probabilistic Polynomial-Time TM
• New kind of NTM, in which each nondeterministic step is a 

coin flip:  has exactly 2 next moves, to each of which we 
assign probability ½.

• Example:

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w– To each maximal branch, we assign 
a probability:

½ × ½ × … × ½

• Has accept and reject states, as 
for NTMs.

• Now we can talk about probability 
of acceptance or rejection, on 
input w.

number of coin flips
on the branch



Probabilistic Poly-Time TMs

1/4 1/4

1/8 1/8 1/8

1/16 1/16

Computation on input w
• Probability of acceptance =

Σb an accepting branch Pr(b)
• Probability of rejection =

Σb a rejecting branch Pr(b)
• Example:  

– Add accept/reject information
– Probability of acceptance = 1/16 + 1/8 

+ 1/4 + 1/8 + 1/4 = 13/16
– Probability of rejection = 1/16 + 1/8 = 

3/16

• We consider TMs that halt (either 
accept or reject) on every branch--
-deciders.

• So the two probabilities total 1.

Acc Acc

Acc Acc Rej

Acc Rej



Probabilistic Poly-Time TMs
• Time complexity:

– Worst case over all branches, as usual.
• Q: What good are probabilistic TMs?
• Random choices can help solve some problems efficiently.
• Good for getting estimates---arbitrarily accurate, based on 

the number of choices.

f

• Example: Monte Carlo estimation of areas 
– E.g, integral of a function f.
– Repeatedly choose a random point (x,y) in the rectangle. 
– Compare y with f(x).
– Fraction of trials in which y ≤ f(x) can be used to estimate the 

integral of f.



Probabilistic Poly-Time TMs
• Random choices can help solve some problems efficiently.
• We’ll see 2 languages that have efficient probabilistic 

estimation algorithms.
• Q: What does it mean to estimate a language?
• Each w is either in the language or not; what does it mean 

to “approximate” a binary decision?

• Possible answer: For “most” inputs w, we always get the 
right answer, on all branches of the probabilistic 
computation tree.

• Or: For “most” w, we get the right answer with high 
probability.

• Better answer: For every input w, we get the right answer 
with high probability.



Probabilistic Poly-Time TMs
• Better answer: For every input w, we get the right answer 

with high probability.
• Definition: A probabilistic TM decider M decides language 

L with error probability ε if
– w ∈ L implies that Pr[ M accepts w ] ≥ 1 - ε, and
– w ∉ L implies that Pr[ M rejects w ] ≥ 1 - ε.

• Definition: Language L is in BPP (Bounded-error 
Probabilistic Polynomial time) if there is a probabilistic 
polynomial-time TM that decides L with error probability 1/3.

• Q: What’s so special about 1/3?
• Nothing.  We would get an equivalent definition (same 

language class) if we chose ε to be any value with 0 < ε < 
½.

• We’ll see this soon---Amplification Theorem



Probabilistic Poly-Time TMs
• Another class, RP, where the error is 1-sided:
• Definition: Language L is in RP (Random 

Polynomial time) if there is a a probabilistic 
polynomial-time TM that decides L, where:
– w ∈ L implies that Pr[ M accepts w ] ≥ 1/2, and
– w ∉ L implies that Pr[ M rejects w ] = 1.

• Thus, absolutely guaranteed to be correct for 
words not in L---always rejects them.

• But, might be incorrect for words in L---might 
mistakenly reject these, in fact, with probability up 
to ½.

• We can improve the ½ to any larger constant < 1, 
using another Amplification Theorem.



RP
• Definition: Language L is in RP (Random 

Polynomial time) if there is a a probabilistic 
polynomial-time TM that decides L, where:
– w ∈ L implies that Pr[ M accepts w ] ≥ 1/2, and
– w ∉ L implies that Pr[ M rejects w ] = 1.

• Always correct for words not in L. 
• Might be incorrect for words in L---can reject these 

with probability up to ½.
• Compare with nondeterministic TM acceptance:

– w ∈ L implies that there is some accepting path, and
– w ∉ L implies that there is no accepting path.



Amplification Lemmas



Amplification Lemmas
• Lemma: Suppose that M is a PPT-TM that decides L with 

error probability ε, where 0 ≤ ε < ½.  
Then for any ε′, 0 ≤ ε′ < ½, there exists M′, another PPT-
TM, that decides L with error probability ε′.

• Proof idea: 
– M′ simulates M many times and takes the majority value 

for the decision.
– Why does this improve the probability of getting the right 

answer?
– E.g., suppose ε = 1/3; then each trial gives the right 

answer at least 2/3 of the time (with 2/3 probability).
– If we repeat the experiment many times, then with very 

high probability, we’ll get the right answer a majority of 
the times.

– How many times?  Depends on ε and ε′.



Amplification Lemmas
• Lemma: Suppose that M is a PPT-TM that decides L with 

error probability ε, where 0 ≤ ε < ½.  
Then for any ε′, 0 ≤ ε′ < ½, there exists M′, another PPT-
TM, that decides L with error probability ε′.

• Proof idea: 
– M′ simulates M many times, takes the majority value.
– E.g., suppose ε = 1/3; then each trial gives the right 

answer at least 2/3 of the time (with 2/3 probability).
– If we repeat the experiment many times, then with very 

high probability, we’ll get the right answer a majority of 
the times.

– How many times?  Depends on ε and ε′.
– 2k, where ( 4ε (1- ε) )k ≤ ε′, suffices.
– In other words k ≥ (log2 ε′) / (log2 (4ε (1- ε))).
– See book for calculations.



Characterization of BPP
• Theorem: L∈BPP if and only for, for some ε, 0 ≤ ε

< ½, there is a PPT-TM that decides L with error 
probability ε.

• Proof:
⇒ If L ∈ BPP, then there is some PPT-TM that decides L 

with error probability ε = 1/3, which suffices.
⇐ If for some ε, a PPT-TM decides L with error probability 

ε, then by the Lemma, there is a PPT-TM that decides L 
with error probability 1/3; this means that L ∈ BPP.



Amplification Lemmas
• For RP, the situation is a little different: 

– If w ∈ L, then Pr[ M accepts w ] could be equal to ½.
– So after many trials, the majority would be just as likely 

to be correct or incorrect.
• But this isn’t useless, because when w ∉ L, the 

machine always answers correctly.
• Lemma: Suppose M is a PPT-TM that decides L, 

0 ≤ ε < 1, and 
w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε.
w ∉ L implies Pr[ M rejects w ] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another 
PPT-TM, that decides L with:

w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε′.
w ∉ L implies Pr[ M rejects w ] = 1.



Amplification Lemmas
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1, 

w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε.
w ∉ L implies Pr[ M rejects w ] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-TM, that 
decides L with:
w ∈ L implies Pr[ M′ accepts w ] ≥ 1 - ε′.
w ∉ L implies Pr[ M′ rejects w ] = 1.

• Proof idea:
– M′:  On input w:

• Run k independent trials of M on w.
• If any accept, then accept; else reject.

– Here, choose k such that εk ≤ ε′.
– If w ∉ L then all trials reject, so M′ rejects, as needed.
– If w ∈ L then each trial accepts with probability ≥ 1 - ε, so 

Prob(at least one of the k trials accepts) 
= 1 – Prob(all k reject) ≥ 1 - εk ≥ 1 - ε′.



Characterization of RP
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1, 

w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε.
w ∉ L implies Pr[ M rejects w ] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-
TM, that decides L with:

w ∈ L implies Pr[ M′ accepts w ] ≥ 1 - ε′.
w ∉ L implies Pr[ M′ rejects w ] = 1.

• Theorem: L ∈ RP iff for some ε, 0 ≤ ε < 1, there is a PPT-
TM that decides L with:

w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε.
w ∉ L implies Pr[ M rejects w ] = 1.



RP vs. BPP
• Lemma: Suppose M is a PPT-TM that decides L, 0 ≤ ε < 1, 

w ∈ L implies Pr[ M accepts w ] ≥ 1 - ε.
w ∉ L implies Pr[ M rejects w ] = 1.

Then for any ε′, 0 ≤ ε′ < 1, there exists M′, another PPT-TM, that 
decides L with:
w ∈ L implies Pr[ M′ accepts w ] ≥ 1 - ε′.
w ∉ L implies Pr[ M′ rejects w ] = 1.

• Theorem: RP ⊆ BPP.
• Proof:  

– Given A ∈ RP, get (by def. of RP) a PPT-TM M with:
w ∈ L implies Pr[ M accepts w ] ≥ ½.
w ∉ L implies Pr[ M rejects w ] = 1.

– By Lemma, get another PPT-TM for A, with:
w ∈ L implies Pr[ M accepts w ] ≥ 2/3.
w ∉ L implies Pr[ M rejects w ] = 1.

– Implies A ∈ BPP, by definition of BPP.



RP, co-RP, and BPP
• Definition: coRP = { L | Lc ∈ RP }
• coRP contains the languages L that can be 

decided by a PPT-TM that is always correct for w 
∈ L and has error probability at most ½ for w ∉ L.

• That is, L is in coRP if there is a PPT-TM that 
decides L, where:
– w ∈ L implies that Pr[ M accepts w ] = 1, and
– w ∉ L implies that Pr[ M rejects w ] ≥ 1/2.

• Theorem: coRP ⊆ BPP.
• So we have:

coRPRP

BPP



Example 1:  Primality Testing



Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot be factored 

as q r, where 1 < q, r < n }
• COMPOSITES = { <n> | n > 1 and n can be factored…}
• We will show an algorithm demonstrating that PRIMES ∈ coRP.
• So COMPOSITES ∈ RP, and both ∈ BPP.

• This is not exciting, because it is now known that both are in P.  
[Agrawal, Kayal, Saxema 2002]

• But their poly-time algorithm is hard, whereas the probabilistic 
algorithm is easy.

• And anyway, this illustrates some nice probabilistic methods.

coRPRP

BPP

COMPOSITES
PRIMES



Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot 

be factored as q r, where 1 < q, r < n }
• COMPOSITES = { <n> | n > 1 and n can be factored…}

• Note:  
– Deciding whether n is prime/composite isn’t the same as factoring.
– Factoring seems to be a much harder problem; it’s at the heart of 

modern cryptography.

coRPRP

BPP

COMPOSITES
PRIMES



Primality Testing
• PRIMES = { <n> | n is a natural number > 1 and n cannot 

be factored as q r, where 1 < q, r < n }
• Show PRIMES ∈ coRP.
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ M accepts n] ≤ 2-k.

• Here, k depends on the number of “trials” M makes.
• M always accepts primes, and almost always correctly 

identifies composites.

• Algorithm rests on some number-theoretic facts about 
primes (just state them here):



Fermat’s Little Theorem
• PRIMES = { <n> | n is a natural number > 1 and n cannot 

be factored as q r, where 1 < q, r < n }
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ M accepts n] ≤ 2-k.

• Fact 1:  Fermat’s Little Theorem: If n is prime and a ∈ Zn
+

then an-1 ≡ 1 mod n.

• Example: n = 5, Zn
+ = {1,2,3,4}.

– a = 1:  15-1 = 14  = 1 ≡ 1 mod 5.
– a = 2:  25-1 = 24  = 16 ≡ 1 mod 5.
– a = 3:  35-1 = 34  = 81 ≡ 1 mod 5.
– a = 4:  45-1 = 44  = 256 ≡ 1 mod 5.

Integers mod n except for 0, that is, {1,2,…,n-1}



Fermat’s test
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ M accepts n] ≤ 2-k.

• Fermat: If n is prime and a ∈ Zn
+ then an-1 ≡ 1 mod n.

• We can use this fact to identify some composites without 
factoring them:

• Example: n = 8, a = 3.
– 38-1 = 37 ≡ 3 mod 8, not 1 mod 8.
– So 8 is composite.

• Algorithm attempt 1: 
– On input n:

• Choose a number a randomly from Zn
+ = { 1,…,n-1 }.

• If an-1 ≡ 1 mod n then accept (passes Fermat test).
• Else reject (known not to be prime).



Algorithm attempt 1
• Design PPT-TM (algorithm) M for PRIMES that satisfies:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ M accepts n] ≤ 2-k.

• Fermat: If n is prime and a ∈ Zn
+ then an-1 ≡ 1 mod n.

• First try: On input n:
– Choose number a randomly from Zn

+ = { 1,…,n-1 }.
– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• This guarantees:
– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n ∉ PRIMES ⇒ ??
– Don’t know.  It could pass the test, and be accepted erroneously.

• The problem isn’t helped by repeating the test many times, 
for many values of a---because there are some non-prime 
n’s that pass the test for all values of a.



Carmichael numbers
• Fermat: If n is prime and a ∈ Zn

+ then an-1 ≡ 1 mod n.
• On input n:

– Choose a randomly from Zn
+ = { 1,…,n-1 }.

– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• Carmichael numbers: Non-primes that pass all Fermat tests, 
for all values of a.

• Fact 2: Any non-Carmichael composite number fails at least 
half of all Fermat tests (for at least half of all values of a).

• So for any non-Carmichael composite, the algorithm 
correctly identifies it as composite, with probability ≥ ½.

• So, we can repeat k times to get more assurance.
• Guarantees:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n a non-Carmichael composite number  ⇒ Pr[ M accepts n] ≤ 2-k.
– n a Carmichael composite number ⇒ Pr[ M accepts n ] = 1 (wrong)



Carmichael numbers
• Fermat: If n is prime and a ∈ Zn

+ then an-1 ≡ 1 mod n.
• On input n:

– Choose a randomly from Zn
+ = { 1,…,n-1 }.

– If an-1 ≡ 1 mod n then accept (passes Fermat test).
– Else reject (known not to be prime).

• Carmichael numbers: Non-primes that pass all Fermat tests.
• Algorithm guarantees:

– n ∈ PRIMES ⇒ Pr[ M accepts n] = 1.
– n a non-Carmichael composite number  ⇒ Pr[ M accepts n] ≤ 2-k.
– n a Carmichael composite number ⇒ Pr[ M accepts n] = 1.  

• We must do something about the Carmichael numbers.
• Use another test, based on:
• Fact 3: For every Carmichael composite n, there is some b 

≠ 1, -1 such that b2 ≡ 1 mod n (that is, 1 has a nontrivial 
square root, mod n).  No prime has such a square root.



Primality-testing algorithm
• Fact 3: For every Carmichael composite n, there is some b 

≠ 1, -1 such that b2 ≡ 1 mod n.  No prime has such a 
square root.

• Primality-testing algorithm:  On input n:
– If n = 1 or n is even:  Give the obvious answer (easy).
– If n is odd and > 1:   Choose a randomly from Zn

+.
• (Fermat test)  If an-1 is not congruent to 1 mod n then reject.
• (Carmichael test)  Write n – 1 = 2h s, where s is odd (factor out 

twos).
– Consider successive squares, as,  a2s, a4s, a8s ..., a2^h s = an-1.
– If all terms are ≡ 1 mod n, then accept.
– If not, then find the last one that isn’t congruent to 1.
– If it’s ≡ -1 mod n then accept else reject.



Primality-testing algorithm
• If n is odd and > 1: 

– Choose a randomly from Zn
+.

– (Fermat test)  If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test)  Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as,  a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Theorem:  This algorithm satisfies:
– n ∈ PRIMES ⇒ Pr[ accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ accepts n] ≤ ½.

• By repeating it k times, we get:
– n ∉ PRIMES ⇒ Pr[ accepts n] ≤ (½)k.



Primality-testing algorithm
• If n is odd and > 1: 

– Choose a randomly from Zn
+.

– (Fermat test)  If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test)  Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as,  a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Theorem:  This algorithm satisfies:
– n ∈ PRIMES ⇒ Pr[ accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ accepts n] ≤ ½.

• Proof: Suppose n is odd and > 1.



Proof
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test)  If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test)  Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as,  a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Proof that n ∈ PRIMES ⇒ Pr[accepts n] = 1.
– Show that, if the algorithm rejects, then n must be composite.
– Reject because of Fermat:  Then not prime, by Fact 1 (primes pass).
– Reject because of Carmichael:  Then 1 has a nontrivial square root b, 

mod n, so n isn’t prime, by Fact 3.
– Let b be the last term in the sequence that isn’t congruent to 1 mod n.
– b2 is the next one, and is ≡ 1 mod n, so b is a square root of 1, mod n.



Proof
• If n is odd and > 1:

– Choose a randomly from Zn
+.

– (Fermat test)  If an-1 is not congruent to 1 mod n then reject.
– (Carmichael test)  Write n – 1 = 2h s, where s is odd.

• Consider successive squares, as,  a2s, a4s, a8s ..., a2^h s = an-1.
• If all terms are ≡ 1 mod n, then accept.
• If not, then find the last one that isn’t congruent to 1.
• If it’s ≡ -1 mod n then accept else reject.

• Proof that n ∉ PRIMES ⇒ Pr[accepts n] ≤ ½.
– Suppose n is a composite.
– If n is not a Carmichael number, then at least half of the possible 

choices of a fail the Fermat test (by Fact 2).
– If n is a Carmichael number, then Fact 3 says that some b fails the 

Carmichael test (is a nontrivial square root).
– Actually, when we generate b using a as above, at least half of the 

possible choices of a generate bs that fail the Carmichael test.
– Why:  Technical argument, in Sipser, p. 374-375.



Primality-testing algorithm
• So we have proved:
• Theorem:  This algorithm satisfies:

– n ∈ PRIMES ⇒ Pr[ accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ accepts n] ≤ ½.

• This implies:
• Theorem:  PRIMES ∈ coRP.
• Repeating k times, or using an amplification lemma, we get:

– n ∈ PRIMES ⇒ Pr[ accepts n] = 1.
– n ∉ PRIMES ⇒ Pr[ accepts n] ≤ (½)k.

• Thus, the algorithm might sometimes make mistakes and 
classify a composite as a prime, but the probability of doing 
this can be made arbitrarily low. 

• Corollary:  COMPOSITES ∈ RP.



Primality-testing algorithm
• Theorem:  PRIMES ∈ coRP.
• Corollary:  COMPOSITES ∈ RP.
• Corollary:  Both PRIMES and COMPOSITES ∈

BPP. 

coRPRP

BPP

COMPOSITES
PRIMES



Example 2:  Branching-Program 
Equivalence



Branching Programs
• Branching program: A variant of a decision tree.  Can be a 

DAG, not just a tree:
• Describes a Boolean function of a set { x1, x2, x3,…} of 

Boolean variables.
• Restriction:  Each variable appears at most once on each 

path.
• Example:  x1 x2 x3 result

0   0   0                0
0   0   1                1
0   1   0                0
0   1   1                0
1   0   0                0
1   0   1                1
1   1   0                1
1   1   1                1

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0



Branching Programs
• Branching program representation for Boolean functions is 

used by system modeling and analysis tools, for systems in 
which the state can be represented using just Boolean 
variables.

• Programs called Binary Decision Diagrams (BDDs).
• Analyzing a model involves exploring all the states, which 

in turn involves exploring all the paths in the diagram.
• Choosing the “right” order of evaluating the variables can 

make a big difference in cost (running time).

• Q: Given two branching programs, B1 and B2, do they 
compute the same Boolean function?

• That is, do the same values for all the variables always 
lead to the same result in both programs?



Branching-Program Equivalence
• Q: Given two branching programs, B1 and B2, do they 

compute the same Boolean function?
• Express as a language problem:

EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the 
same Boolean function }.

• Theorem: EQBP is in coRP ⊆ BPP.
• Note: Need the restriction that a variable appears at most 

once on each path.  Otherwise, the problem is coNP-
complete.

• Proof idea:
– Pick random values for x1, x2, … and see if they lead to the same 

answer in B1 and B2.
– If so, accept; if not, reject.
– Repeat several times for extra assurance.



Branching-Program Equivalence
EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the

same Boolean function }
• Theorem: EQBP is in coRP ⊆ BPP.
• Proof idea:

– Pick random values for x1, x2, … and see if they lead to the same 
answer in B1 and B2.

– If so, accept; if not, reject.
– Repeat several times for extra assurance.

• This is not quite good enough:  
– Some inequivalent BPs differ on only one assignment to the vars.  
– Unlikely that the algorithm would guess this assignment.

• Better proof idea:  
– Consider the same BPs but now pretend the domain of values for 

the variables is Zp, the integers mod p, for a large prime p, rather 
than just {0,1}.

– This will let us make more distinctions, making it less likely that we 
would think B1 and B2 are equivalent if they aren’t.



Branching-Program Equivalence
EQBP = { < B1, B2 > | B1 and B2 are BPs that compute the

same Boolean function }
• Theorem: EQBP is in coRP ⊆ BPP.
• Proof idea:

– Pick random values for x1, x2, … and see if they lead to the same 
answer in B1 and B2.

– If so, accept; if not, reject.
– Repeat several times for extra assurance.

• Better proof idea:  
– Pretend that the domain of values for the variables is Zp, the 

integers mod p, for a large prime p, rather than just {0,1}.
– This lets us make more distinctions, making it less likely that we 

would think B1 and B2 are equivalent if they aren’t.
– But how do we apply the programs to integers mod p?
– By associating a multi-variable polynomial with each program:



Associating a polynomial with a BP
• Associate a polynomial with each node in the BP, 

and use the poly associated with the 1-result node 
as the poly for the entire BP.   

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0
1

x1

x1 (1-x3)

x1 (1-x3) x2
+ x1 x3

+ (1-x1) (1-x2) x3

1 - x1

(1-x1) (1-x2)

(1-x1) (1-x2) (1-x3)
+ (1- x1) x2

+ x1 (1-x3) (1- x2)

The polynomial associated with the program



Labeling rules
• Top node:  Label with polynomial 1.
• Non-top node:  Label with sum of polys, one for each incoming edge:

– Edge labeled with 1, from x, labeled with p, contributes p x.
– Edge labeled with 0, from x, labeled with p, contributes p (1-x).

x1

x3

x2

10

x3

x2

1
1

1 1

1

0
0

00

0
1

x1

x1 (1-x3)

x1 (1-x3) x2
+ x1 x3

+ (1-x1) (1-x2) x3

1 - x1

(1-x1) (1-x2)

(1-x1) (1-x2) (1-x3)
+ (1- x1) x2

+ x1 (1-x3) (1- x2)

The polynomial associated with the program



Labeling rules
• Top node:  Label with polynomial 1.
• Non-top node:  Label with sum of polys, one for 

each incoming edge:
– Edge labeled with 1, from x labeled with p, contributes 

p x.
– Edge labeled with 0, from x labeled with p, contributes 

p (1-x).

x

1

p

p x

x

0

p

p (1-x)



Associating a polynomial with a BP
• What do these polynomials mean for Boolean values?
• For any particular assignment of { 0, 1 } to the variables, 

each polynomial at each node evaluates to either 0 or 1 
(because of their special form).

• The polynomials on the path followed by that assignment 
all evaluate to 1, and all others evaluate to 0.

• The polynomial associated with the entire program 
evaluates to 1 exactly for the assignments that lead there = 
those that are assigned value 1 by the program.

• Example: Above.  
– The assignments leading to result 1 are:           
– Which are exactly the assignments for which 

the program’s polynomial evaluates to 1.    

x1 x2 x3
0   0   1    
1   0   1            
1   1   0            
1   1   1       x1 (1-x3) x2

+ x1 x3
+ (1-x1) (1-x2) x3



Branching-Program Equivalence
• Now consider Zp, integers mod p, for a large prime p (much 

bigger than the number of variables).

• Equivalence algorithm: On input < B1, B2 >, where both 
programs use m variables:
– Choose elements a1, a2,…,am from Zp at random.
– Evaluate the polynomials p1 associated with B1 and p2 associated 

with B2 for x1 = a1, x2 = a2,…,xm = am.
• Evaluate them node-by-node, without actually constructing all 

the polynomials for both programs.
• Do this in polynomial time in the size of < B1, B2 >, LTTR.

– If the results are equal (mod p) then accept; else reject.

• Theorem: The equivalence algorithm guarantees:
– If B1 and B2 are equivalent BPs (for Boolean values) then 

Pr[ algorithm accepts n] = 1.
– If B1 and B2 are not equivalent, then Pr[ algorithm rejects n] ≥ 2/3.



Branching-Program Equivalence
• Equivalence algorithm: On input < B1, B2 >:

– Choose elements a1, a2,…,am from Zp at random.
– Evaluate the polynomials p1 associated with B1 and p2 associated 

with B2 for x1 = a1, x2 = a2,…,xm = am.
– If the results are equal (mod p) then accept; else reject.

• Theorem: The equivalence algorithm guarantees:
– If B1 and B2 are equivalent BPs then Pr[ accepts n] = 1.
– If B1 and B2 are not equivalent, then Pr[ rejects n] ≥ 2/3.

• Proof idea:  (See Sipser, p. 379)
– If B1 and B2 are equivalent BPs (for Boolean values), then p1 and p2 

are equivalent polynomials over Zp, so always accepts.
– If B1 and B2 are not equivalent (for Boolean values), then at least 

2/3 of the possible sets of choices from Zp yield different values, so 
Pr[ rejects n] ≥ 2/3.

• Corollary: EQBP ∈ coRP ⊆ BPP.



Relationships Between Complexity 
Classes



Relationships between         
complexity classes

• We know:

• Also recall: 

• From the definitions, RP ⊆ NP and coRP ⊆ coNP.
• So we have:

coRPRP

P

BPP

NP

P

coNP



Relationships between classes

• So we have:

• Q: Where does BPP fit in?

RP

P

coRP

NP coNP



Relationships between classes
• Where does BPP fit?

– NP ∪ coNP ⊆ BPP ?
– BPP = P ?
– Something in between ?

• Many people believe 
BPP = RP = coRP = P, 
that is, that randomness 
doesn’t help.

• How could this be?

RP

P

coRP

NP coNP

• Perhaps we can emulate randomness with pseudo-random 
generators---deterministic algorithms whose output “looks 
random”.

• What does it mean to “look random”?
• A polynomial-time TM can’t distinguish them from random.
• Current research!



Next time…

• Cryptography!
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