6.045. Automata, Computability, and
Complexity (GITCS)

Class 17
Nancy Lynch

Today

Probabilistic Turing Machines and Probabilistic
Time Complexity Classes

Now add a new capability to standard TMs:
random choice of moves.

Gives rise to new complexity classes: BPP and
RP

Topics:

— Probabilistic polynomial-time TMs, BPP and RP
— Amplification lemmas

— Example 1: Primality testing

— Example 2: Branching-program equivalence

— Relationships between classes

Reading:

— Sipser Section 10.2

Probabilistic Polynomial-Time Turing
Machines, BPP and RP

Probabillistic Polynomial-Time TM

New kind of NTM, in which each nondeterministic step is a
coin flip: has exactly 2 next moves, to each of which we
assign probabillity Y.

Example:

— To each maximal branch, we assign Computation on input w
a probability:
Yox1lox ... xV2

- /
hd

number of coin flips 1/4
on the branch 14

Has accept and reject states, as 1/8 1/8 1/8
for NTMs.
1/16 1/16

Now we can talk about probability
of acceptance or rejection, on
Input w.

Probabillistic Poly-Time TMs

N Computation on input w
Probability of acceptance =

Zb an accepting branch Pr(b)
Probability of rejection =

1/4 1/4
z:b a rejecting branch Pl’(b)
Example: 1/8 1/8 1/8
— Add accept/reject information 1/16 1/16
— Probability of acceptance = 1/16 + 1/8
+1/4 +1/8 + 1/4 = 13/16
— Probability of rejection = 1/16 + 1/8 =
3/16
We consider TMs that halt (either Ace Acc

accept or reject) on every branch-- |
-deciders. Acc Acc Rej

So the two probabilities total 1. Acc Re;j

Probabillistic Poly-Time TMs

Time complexity:

— Worst case over all branches, as usual.

Q: What good are probabilistic TMs?

Random choices can help solve some problems efficiently.

Good for getting estimates---arbitrarily accurate, based on
the number of choices.

Example: Monte Carlo estimation of areas

— E.g, integral of a function f.

— Repeatedly choose a random point (x,y) in the rectangle.

— Compare y with f(x).

— Fraction of trials in which y < f(x) can be used to estimate the

integral of f.
J\

Probabillistic Poly-Time TMs

Random choices can help solve some problems efficiently.

We’'ll see 2 languages that have efficient probabilistic
estimation algorithms.

Q: What does it mean to estimate a language?

Each w is either in the language or not; what does it mean
to “approximate” a binary decision?

Possible answer: For “most” inputs w, we always get the
right answer, on all branches of the probabilistic
computation tree.

Or: For “most” w, we get the right answer with high
probabillity.

Better answer: For every input w, we get the right answer
with high probability.

Probabillistic Poly-Time TMs

Better answer: For every input w, we get the right answer
with high probability.

Definition: A probabilistic TM decider M decides language
L with error probability ¢ if

— W € L implies that Pr[M acceptsw] >1 - ¢, and

— w ¢ Limplies that Prf M rejectsw] > 1 -e.

Definition: Language L is in BPP (Bounded-error

Probabilistic Polynomial time) if there is a probabilistic
polynomial-time TM that decides L with error probability 1/3.

Q: What's so special about 1/37

Nothing. We would get an equivalent definition (same
language class) if we chose ¢ to be any value with 0 < ¢ <
73

We’'ll see this soon---Amplification Theorem

Probabilistic Poly-Time TMs

Another class, RP, where the error is 1-sided:

Definition: Language L is in RP (Random
Polynomial time) if there is a a probabillistic
nolynomial-time TM that decides L, where:
— w e L implies that Pr[M accepts w | > 1/2, and
— w ¢ L implies that Pr[M rejects w | = 1.

Thus, absolutely guaranteed to be correct for
words not in L---always rejects them.

But, might be incorrect for words in L---might
mistakenly reject these, in fact, with probability up
to Y.

We can improve the %2 to any larger constant < 1,
using another Amplification Theorem.

RP

Definition: Language L is in RP (Random
Polynomial time) if there is a a probabillistic
nolynomial-time TM that decides L, where:

— w € L implies that Pr[M accepts w | > 1/2, and
— W ¢ L implies that Pr[M rejects w | = 1.

Always correct for words not in L.

Might be incorrect for words in L---can reject these
with probabillity up to .
Compare with nondeterministic TM acceptance:

— W € L implies that there is some accepting path, and
— W ¢ L implies that there is no accepting path.

Amplification Lemmas

Amplification Lemmas

« Lemma: Suppose that M is a PPT-TM that decides L with
error probability €, where 0 < g <14.

Then for any €', 0 < &' <14, there exists M’, another PPT-
TM, that decides L with error probability €'.
 Proof idea:

— M’ simulates M many times and takes the majority value
for the decision.

— Why does this improve the probability of getting the right
answer?

— E.qg., suppose ¢ = 1/3; then each trial gives the right
answer at least 2/3 of the time (with 2/3 probability).

— If we repeat the experiment many times, then with very
high probability, we’ll get the right answer a majority of
the times.

— How many times? Depends on ¢ and ¢'.

Amplification Lemmas

« Lemma: Suppose that M is a PPT-TM that decides L with
error probability €, where 0 < g <14.

Then for any €', 0 < &' <14, there exists M’, another PPT-
TM, that decides L with error probability €'.

* Proof idea:
— M’ simulates M many times, takes the majority value.

— E.qg., suppose ¢ = 1/3; then each trial gives the right
answer at least 2/3 of the time (with 2/3 probability).

— If we repeat the experiment many times, then with very
high probability, we’ll get the right answer a majority of
the times.

— How many times? Depends on ¢ and ¢'.

— 2k, where (4¢ (1- €))* < ¢, suffices.

— In other words k > (log, €') / (log, (4¢ (1- €))).
— See book for calculations.

Characterization of BPP

« Theorem: LeBPP if and only for, forsome ¢, 0 <¢
< v, there is a PPT-TM that decides L with error
probabillity .

 Proof:

= If L € BPP, then there is some PPT-TM that decides L
with error probability € = 1/3, which suffices.

< If for some ¢, a PPT-TM decides L with error probability
g, then by the Lemma, there is a PPT-TM that decides L
with error probability 1/3; this means that L € BPP.

Amplification Lemmas

 For RP, the situation Is a little different:
— If w € L, then Pr[M accepts w] could be equal to Y.

— So after many trials, the majority would be just as likely
to be correct or incorrect.

» But this isn’t useless, because when w ¢ L, the
machine always answers correctly.

« Lemma: Suppose M is a PPT-TM that decides L,

0<e<1, and
w € L implies Pr[M acceptsw | > 1 - .
w ¢ L implies Pr[M rejects w | = 1.

Then for any ¢/, 0 < ¢’ < 1, there exists M’, another

PPT-TM, that decides L with:

w € L implies Pr[M acceptsw] >1-¢'.
w ¢ L implies Pr[M rejects w | = 1.

Amplification Lemmas

e Lemma: Suppose Mis a PPT-TM that decides L, 0<¢e< 1,
w € L implies Pr[M acceptsw]>1 -«.
w ¢ L implies Pr[M rejects w | = 1.
Then for any €', 0 < ¢’ < 1, there exists M’, another PPT-TM, that
decides L with:

w € L implies Pr[M" acceptsw] >1-¢'.
w ¢ L implies Pr[M’ rejectsw | = 1.
* Proof idea:
— M’: On input w:
* Run k independent trials of M on w.
 |f any accept, then accept; else reject.
— Here, choose k such that ek < ¢'.
— If w ¢ L then all trials reject, so M’ rejects, as needed.
— If w € L then each trial accepts with probability > 1 - ¢, so
Prob(at least one of the k trials accepts)
=1—Prob(all kreject) >1-ek>1-¢'.

Characterization of RP

e Lemma: Suppose Mis a PPT-TM thatdecidesL,0<¢g<1,
w € L implies Pr[M acceptsw] >1 - .
w ¢ L implies Pr[M rejects w | = 1.

Then forany €', 0 < ¢’ <1, there exists M’, another PPT-
TM, that decides L with:

w € L implies Pr[M" acceptsw]| >1 - ¢'.
w ¢ L implies Pr[M’ rejects w | = 1.

e Theorem: L € RP iff forsome g, 0<e< 1, thereis a PPT-
TM that decides L with:

w € L implies Pr[M acceptsw] >1 - .
w ¢ L implies Pr[M rejects w | = 1.

RP vs. BPP

e Lemma: Suppose Mis a PPT-TM that decides L, 0<¢e< 1,
w € L implies Pr[M acceptsw]>1 -«.
w ¢ L implies Pr[M rejects w | = 1.

Then for any €', 0 < ¢’ < 1, there exists M’, another PPT-TM, that
decides L with:

w € L implies Pr[M" acceptsw]>1-¢'.
w ¢ L implies Pr[M’ rejects w | = 1.
e Theorem: RP < BPP.
* Proof:
— Given A € RP, get (by def. of RP) a PPT-TM M with:
w € L implies Pr[M accepts w | > %.
w ¢ L implies Pr[M rejects w | = 1.
— By Lemma, get another PPT-TM for A, with:
w € L implies Pr[M accepts w]| > 2/3.
w ¢ L implies Pr[M rejects w | = 1.
— Implies A € BPP, by definition of BPP.

RP, co-RP, and BPP

Definition: coRP ={L |L® € RP }
coRP contains the languages L that can be

decided by a PPT-TM that is always correct for w
e L and has error probability at most %2 for w ¢ L.

That is, L is In coRP if there i1s a PPT-TM that
decides L, where:

— W € L implies that Pr[M accepts w] =1, and

— w ¢ L implies that Pr[M rejects w | > 1/2.
Theorem: coRP c BPP.

So we have: BPP

(=0=

Example 1. Primality Testing

Primality Testing

PRIMES = { <n> | n is a natural number > 1 and n cannot be factored
asqr,wherel<qg,r<n}

COMPOSITES ={<n>| n>1 and n can be factored...}
We will show an algorithm demonstrating that PRIMES € coRP.
So COMPOSITES € RP, and both € BPP.

BPP

COMPOSITES | '

This is not exciting, because it is now known that both are in P.
[Agrawal, Kayal, Saxema 2002]

But their poly-time algorithm is hard, whereas the probabilistic
algorithm is easy.

And anyway, this illustrates some nice probabilistic methods.

PRIMES

Primality Testing

e PRIMES ={<n>|nis a natural number > 1 and n cannot
be factored as qr,wherel<q,r<n}

e COMPOSITES ={<n>|n>1 and n can be factored...}

BPP

COMPOSITES | '

 Note:
— Deciding whether n is prime/composite isn’t the same as factoring.

— Factoring seems to be a much harder problem; it’s at the heart of
modern cryptography.

PRIMES

Primality Testing

PRIMES = {<n>| nis a natural number > 1 and n cannot
be factored as qr,wherel<q,r<n}

Show PRIMES e coRP.

Design PPT-TM (algorithm) M for PRIMES that satisfies:

— n € PRIMES = Pr[M accepts n] = 1.
— n ¢ PRIMES = Pr[M accepts n] < 2,

Here, k depends on the number of “trials” M makes.

M always accepts primes, and almost always correctly
Identifies composites.

Algorithm rests on some number-theoretic facts about
primes (just state them here):

Fermat’s Little Theorem

PRIMES = {<n>| nis a natural number > 1 and n cannot
be factored as qr,wherel<q,r<n}

Design PPT-TM (algorithm) M for PRIMES that satisfies:
— n € PRIMES = Pr[M accepts n] = 1.
— n ¢ PRIMES = Pr[M accepts n] < 2,

Fact 1: Fermat’s Little Theorem: Ifnis primeanda e Z*
then a™1 =1 mod n. /

Integers mod n except for O, that is, {1,2,...,n-1}

Example: n=5, 2 *={1,2,3,4}.
—a=1: 1°1=1=1=1 mod 5.
—a=2: 2°1=24=16=1 mod 5.

— a=3;: 31 =34=81=1mod5.
—a=4: 451 =44 =256=1 mod 5.

Fermat's test

Design PPT-TM (algorithm) M for PRIMES that satisfies:
— n € PRIMES = Pr[M accepts n] = 1.

— n ¢ PRIMES = Pr[M accepts n] < 2,

Fermat: If nis prime and a € Z,* then a™! =1 mod n.

We can use this fact to identify some composites without
factoring them:
Example: n=8,a=3.
— 3%1 =37 =3 mod 8, not 1 mod 8.
— S0 8 is composite.
Algorithm attempt 1:
— Oninput n;
e Choose a number a randomly from Z_*={1,...,n-1}.
e If a™! =1 mod n then accept (passes Fermat test).
» Else reject (known not to be prime).

Algorithm attempt 1

Design PPT-TM (algorithm) M for PRIMES that satisfies:
— n € PRIMES = Pr[M accepts n] = 1.
— n ¢ PRIMES = Pr[M accepts n] < 2,

Fermat: If nis prime and a € Z,* then a™! =1 mod n.
First try: On input n:
— Choose number a randomly from Z * ={1,...,n-1 }.

— If a™ = 1 mod n then accept (passes Fermat test).
— Else reject (known not to be prime).

This guarantees:

— n € PRIMES = Pr[M accepts n] = 1.

— n ¢ PRIMES = 7?7

— Don’t know. It could pass the test, and be accepted erroneously.
The problem isn’t helped by repeating the test many times,

for many values of a---because there are some non-prime
n’s that pass the test for all values of a.

Carmichael numbers

Fermat: If nis prime and a € Z,* then a™1 =1 mod n.
On input n:

— Choose a randomly from Z,* ={1,...,n-1 }.

— If a1 = 1 mod n then accept (passes Fermat test).
— Else reject (known not to be prime).

Carmichael numbers: Non-primes that pass all Fermat tests,
for all values of a.

Fact 2: Any non-Carmichael composite humber fails at least
half of all Fermat tests (for at least half of all values of a).

So for any non-Carmichael composite, the algorithm
correctly identifies it as composite, with probability > 5.

So, we can repeat k times to get more assurance.

Guarantees:

— n € PRIMES = Pr[M accepts n] = 1.

— n a non-Carmichael composite number = Pr[M accepts n] < 2K,
— n a Carmichael composite number = Pr[M accepts n] =1 (wrong)

Carmichael numbers

Fermat: If nis prime and a € Z,* then a™1 =1 mod n.
On input n:

— Choose a randomly from Z,* ={1,...,n-1 }.

— If a1 = 1 mod n then accept (passes Fermat test).
— Else reject (known not to be prime).

Carmichael numbers: Non-primes that pass all Fermat tests.

Algorithm guarantees:
— n € PRIMES = Pr[M accepts n] = 1.
— n a non-Carmichael composite number = Pr[M accepts n] < 2K,
— n a Carmichael composite number = Pr[M accepts n] = 1.
We must do something about the Carmichael numbers.
Use another test, based on:

Fact 3: For every Carmichael composite n, there is some b
1, -1 such that b2 =1 mod n (that is, 1 has a nontrivial
sguare root, mod n). No prime has such a square root.

Primality-testing algorithm

 Fact 3: For every Carmichael composite n, there is some b
1, -1 such that b2=1 mod n. No prime has such a

square root.
e Primality-testing algorithm: On input n:
— Ifn=1ornis even: Give the obvious answer (easy).

— If nisodd and > 1: Choose a randomly from Z_*.
e (Fermat test) If a™tis not congruent to 1 mod n then reject.
» (Carmichael test) Write n— 1 =2h s, where s is odd (factor out

twos).
— Consider successive squares, a%> a%s, a*, a® ..., a?hs = a"l,

— If all terms are = 1 mod n, then accept.
— If not, then find the last one that isn’'t congruent to 1.
— If it's = -1 mod n then accept else reject.

Primality-testing algorithm

e Ifnisoddand>1:

— Choose a randomly from Z_*.

— (Fermat test) If a™!is not congruent to 1 mod n then reject.

— (Carmichael test) Write n—1 = 2" s, where s is odd.
» Consider successive squares, a> a2, a*, a? ..., a’hs = anl,
 |f all terms are = 1 mod n, then accept.
 |f not, then find the last one that isn’t congruent to 1.
* If it's =-1 mod n then accept else reject.

e Theorem: This algorithm satisfies:
— n € PRIMES = Pr[accepts n] = 1.
— n ¢ PRIMES = Pr[accepts n] < .
By repeating it k times, we get:
— n ¢ PRIMES = Pr[accepts n] < (¥2) .

Primality-testing algorithm

e Ifnisoddand>1:

— Choose a randomly from Z_*.

— (Fermat test) If a™!is not congruent to 1 mod n then reject.

— (Carmichael test) Write n—1 = 2" s, where s is odd.
» Consider successive squares, a> a2, a*, a? ..., a’hs = anl,
 |f all terms are = 1 mod n, then accept.
 |f not, then find the last one that isn’t congruent to 1.
* If it's =-1 mod n then accept else reject.

e Theorem: This algorithm satisfies:
— n € PRIMES = Pr[accepts n] = 1.
— n ¢ PRIMES = Pr[accepts n] < .

* Proof: Suppose nis odd and > 1.

Proof

If nis odd and > 1:

Choose a randomly from Z_*.
(Fermat test) If a™!is not congruent to 1 mod n then reject.
(Carmichael test) Write n—1 =2"s, where s is odd.
» Consider successive squares, a> a2, a*, a? ..., a’hs = anl,
 |f all terms are = 1 mod n, then accept.
 |f not, then find the last one that isn’t congruent to 1.
* If it's =-1 mod n then accept else reject.

Proof that n € PRIMES = Pr[accepts n] = 1.

Show that, if the algorithm rejects, then n must be composite.
Reject because of Fermat: Then not prime, by Fact 1 (primes pass).

Reject because of Carmichael: Then 1 has a nontrivial square root b,
mod n, so nisn’'t prime, by Fact 3.

Let b be the last term in the sequence that isn’t congruent to 1 mod n.
b2 is the next one, and is =1 mod n, so b is a square root of 1, mod n.

Proof
If nIs odd and > 1:

— Choose a randomly from Z_*.
— (Fermat test) If a™!is not congruent to 1 mod n then reject.
— (Carmichael test) Write n—1 = 2" s, where s is odd.
« Consider successive squares, a> a2, a*, a? ..., a2’hs = anl,
 |f all terms are = 1 mod n, then accept.
 |f not, then find the last one that isn’t congruent to 1.
* If it's =-1 mod n then accept else reject.

Proof that n ¢ PRIMES = Pr[accepts n] < 4.

— Suppose n is a composite.

— If nis not a Carmichael number, then at least half of the possible
choices of a fail the Fermat test (by Fact 2).

— If nis a Carmichael number, then Fact 3 says that some b fails the
Carmichael test (is a nontrivial square root).

— Actually, when we generate b using a as above, at least half of the
possible choices of a generate bs that fail the Carmichael test.

— Why: Technical argument, in Sipser, p. 374-375.

Primality-testing algorithm

So we have proved:

Theorem: This algorithm satisfies:
— n € PRIMES = Pr| accepts n] = 1.

— n ¢ PRIMES = Pr[accepts n] <.
This implies:

Theorem: PRIMES € coRP.

Repeating k times, or using an amplification lemma, we get:
— n € PRIMES = Pr[accepts n] = 1.

— n ¢ PRIMES = Pr[accepts n] < (*2) .

Thus, the algorithm might sometimes make mistakes and

classify a composite as a prime, but the probability of doing
this can be made arbitrarily low.

Corollary: COMPOSITES € RP.

Primality-testing algorithm

e Theorem: PRIMES € coRP.
e Corollary: COMPOSITES € RP.

e Corollary: Both PRIMES and COMPOSITES ¢
BPP.

COMPOSITES | a»
PRIMES

Example 2: Branching-Program
Equivalence

Branching Programs

Branching program: A variant of a decision tree. Can be a
DAG, not just a tree:

Describes a Boolean function of a set { X;, X,, X3,...} of
Boolean variables.

Restriction: Each variable appears at most once on each
path.

Example: X; X, X3 result
0 0O 0

PR RPRPLOOO
PR OORPEFRO
P ORFRORFROR
P RPRFRPOOOR

Branching Programs

Branching program representation for Boolean functions is
used by system modeling and analysis tools, for systems in
which the state can be represented using just Boolean
variables.

Programs called Binary Decision Diagrams (BDDs).

Analyzing a model involves exploring all the states, which
In turn involves exploring all the paths in the diagram.

Choosing the “right” order of evaluating the variables can
make a big difference in cost (running time).

Q: Given two branching programs, B, and B,, do they
compute the same Boolean function?

That Is, do the same values for all the variables always
lead to the same result in both programs?

Branching-Program Equivalence

Q: Given two branching programs, B, and B,, do they
compute the same Boolean functlon?

Express as a language problem:

EQgzs = { <B,, B, >| B, and B, are BPs that compute the
same Boolean functlon }

Theorem: EQgpIs in coRP < BPP.

Note: Need the restriction that a variable appears at most
once on each path. Otherwise, the problem is coNP-
complete.

Proof idea:

— Pick random values for x,, X,, ... and see if they lead to the same
answer in B, and B.,.

— If so, accept if not, reJect.
— Repeat several times for extra assurance.

Branching-Program Equivalence

EQgr ={ < By, B,>| B, and B, are BPs that compute the
same Boolean function }
Theorem: EQgpIs in coRP c BPP.

Proof idea:

— Pick random values for x,, X,, ... and see if they lead to the same
answer in B, and B.,.

— If so, accept; if not, reject.
— Repeat several times for extra assurance.

This is not quite good enough:
— Some inequivalent BPs differ on only one assignment to the vars.
— Unlikely that the algorithm would guess this assignment.

Better proof idea:

— Consider the same BPs but now pretend the domain of values for
the variables is Z,, the integers mod p, for a large prime p, rather
than just {0,1}.

— This will let us make more distinctions, making it less likely that we
would think B, and B, are equivalent if they aren't.

p7

Branching-Program Equivalence

EQgr ={ < By, B,>| B, and B, are BPs that compute the

same Boolean function }

e Theorem: EQgplIs In CORP < BPP.

* Proof idea:
— Pick random values for x,, X,, ... and see if they lead to the same

answer in B, and B,

— If so, accept; if not, reject.
— Repeat several times for extra assurance.

o Better proof idea:

Pretend that the domain of values for the variables is Zp, the
Integers mod p, for a large prime p, rather than just {0,1}.

This lets us make more distinctions, making it less likely that we
would think B, and B, are equivalent if they aren't.

But how do we apply the programs to integers mod p?
By associating a multi-variable polynomial with each program:

Assoclating a polynomial with a BP

e Associate a polynomial with each node in the BP,
and use the poly associated with the 1-result node
as the poly for the entire BP.

(1-Xy) (1-xy) X; (1-X5)
(1-x,) (1-x,) (1-x,) X, (1-X3) X,
+ (1- Xy) X, « + X, X3
+ X1 (1-%3) (1- %)) +(1-x1) (1-X;) X5

The polynomial associated with the program

Labeling rules

 Top node: Label with polynomial 1.

* Non-top node: Label with sum of polys, one for each incoming edge:
— Edge labeled with 1, from x, labeled with p, contributes p x.
— Edge labeled with O, from x, labeled with p, contributes p (1-x).

(1-Xy) (1-xy) X; (1-X5)
(1-x,) (1-x,) (1-x,) X, (1-X3) X,
+ (1- Xy) X, + X, X3
+ X1 (1-%3) (1- %)) +(1-x1) (1-X;) X5

The polynomial associated with the program

Labeling rules

 Top node: Label with polynomial 1.

* Non-top node: Label with sum of polys, one for
each incoming edge:
— Edge labeled with 1, from x labeled with p, contributes

P X.
— Edge labeled with O, from x labeled with p, contributes

p (1-x).

1 0

| PX —p(Ax

Assoclating a polynomial with a BP

What do these polynomials mean for Boolean values?

For any particular assignment of { O, 1 } to the variables,
each polynomial at each node evaluates to either O or 1
(because of their special form).

The polynomials on the path followed by that assignment
all evaluate to 1, and all others evaluate to O.

The polynomial associated with the entire program
evaluates to 1 exactly for the assignments that lead there =
those that are assigned value 1 by the program.

Example: Above.
— The assignments leading to result 1 are:

— Which are exactly the assignments for which
the program’s polynomial evaluates to 1.

R R PP O X
P R O O X
P OFR P X

X1 (1-X3) X,
+ X1 X3
+ (1-X,) (1-X,) Xq

Branching-Program Equivalence

Now consider Z,,, integers mod p, for a large prime p (much
bigger than the number of variables).

Equivalence algorithm: On input < B, B, >, where both

programs use m variables:

— Choose elements a,, a,,...,a,, from Z, at random.

— Evaluate the polynomials p, associated with B, and p, associated

with B, for x, = a;, X, = a,,...,X, = @
» Evaluate them node-by-node, without actually constructing all
the polynomials for both programs.

e Do this in polynomial time in the size of <B,, B, >, LTTR.

— If the results are equal (mod p) then accept; else reject.

Theorem: The equivalence algorithm guarantees:
— If B, and B, are equivalent BPs (for Boolean values) then
Pr[algorithm accepts n] = 1.
— If B, and B, are not equivalent, then Pr[algorithm rejects n] > 2/3.

Branching-Program Equivalence

Equivalence algorithm: On input < B,, B, >:

— Choose elements a,, a,,...,a,, from Z, at random.

— Evaluate the polynomials p, associated with B, and p, associated

with B, for x, = a;, X, = a,,...,X;, = &

— If the results are equal (mod p) then accept; else reject.
Theorem: The equivalence algorithm guarantees:

— If B, and B, are equivalent BPs then Pr[accepts n] = 1.

— If B, and B, are not equivalent, then Pr[rejects n] > 2/3.

Proof idea: (See Sipser, p. 379)

— If B, and B, are equivalent BPs (for Boolean values), then p, and p,
are equivalent polynomials over Z;, so always accepts.

— If B, and B, are not equivalent (for Boolean values), then at least
2/3 of the possible sets of choices from Z, yield different values, so
Pr[rejects n] > 2/3.

Corollary: EQgp € cORP c BPP.

Relationships Between Complexity
Classes

Relationships between

complexity classes
We know: BPP

Also recall:

From the definitions, RP — NP and coRP < coNP.
So we have:

Relationships between classes

S67

~—

 Q: Where does BPP fit In?

e So we have:

Relationships between classes

Where does BPP fit?

— NP U coNP c BPP ?

— BPP=P? ‘

— Something in between ? (’
Many people believe @
BPP = RP = coRP =P,
that is, that randomness v

doesn’t help.
How could this be?

Perhaps we can emulate randomness with pseudo-random
generators---deterministic algorithms whose output “looks
random”.

What does it mean to “look random™?
A polynomial-time TM can’t distinguish them from random.
Current research!

Next time...

e Cryptography!

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity (GITCS)
	Today
	Probabilistic Polynomial-Time Turing Machines, BPP and RP
	Probabilistic Polynomial-Time TM
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	Probabilistic Poly-Time TMs
	RP
	Amplification Lemmas
	Amplification Lemmas
	Amplification Lemmas
	Characterization of BPP
	Amplification Lemmas
	Amplification Lemmas
	Characterization of RP
	RP vs. BPP
	RP, co-RP, and BPP
	Example 1: Primality Testing
	Primality Testing
	Primality Testing
	Primality Testing
	Fermat’s Little Theorem
	Fermat’s test
	Algorithm attempt 1
	Carmichael numbers
	Carmichael numbers
	Primality-testing algorithm
	Primality-testing algorithm
	Primality-testing algorithm
	Proof
	Proof
	Primality-testing algorithm
	Primality-testing algorithm
	Example 2: Branching-Program Equivalence
	Branching Programs
	Branching Programs
	Branching-Program Equivalence
	Branching-Program Equivalence
	Branching-Program Equivalence
	Associating a polynomial with a BP
	Labeling rules
	Labeling rules
	Associating a polynomial with a BP
	Branching-Program Equivalence
	Branching-Program Equivalence
	Relationships Between Complexity Classes
	Relationships between complexity classes
	Relationships between classes
	Relationships between classes
	Next time…

