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Today:  More NP-Completeness
• Topics:

– 3SAT is NP-complete
– Clique and VertexCover are NP-complete
– More examples, overview
– Hamiltonian path and Hamiltonian circuit
– Traveling Salesman problem
– More examples, revisited

• Reading:
– Sipser Sections 7.4-7.5
– Garey and Johnson

• Next:
– Sipser Section 10.2



3SAT is NP-Complete



NP-Completeness
• Definition:  Language B is NP-complete if both           

of the following hold:
(a) B ∈ NP, and
(b) For any language A ∈ NP, A ≤p B.

• Definition:  Language B is NP-hard if, for any 
language A ∈ NP, A ≤p B.

NP

P



3SAT is NP-Complete
• SAT = { < φ > | φ is a satisfiable Boolean formula }
• Boolean formula:  Constructed from literals using 

operations, e.g.:
φ = x  ∧ ( ( y  ∧ z ) ∨ (¬y  ∧ ¬z ) ) ∧ ¬( x ∧ z )

• A Boolean formula is satisfiable iff there is an assignment 
of 0s and 1s to the variables that makes the entire formula 
evaluate to 1 (true).

• Theorem:  SAT is NP-complete.
• 3SAT:  Satisfiable Boolean formulas of a restricted kind---

conjunctive normal form (CNF) with exactly 3 literals per 
clause.

• Theorem: 3SAT is NP-complete.
• Proof:  

– 3SAT ∈ NP:  Obvious.
– 3SAT is NP-hard:  …



3SAT is NP-hard
• Clause:  Disjunction of literals, e.g., ( ¬x1  ∨ x2 ∨ ¬x3 )
• CNF: Conjunction of such clauses
• Example:

( ¬x1  ∨ x2 ) ∧ ( x1  ∨ ¬x2 ) ∧ ( x1  ∨ x2 ∨ ¬x3 ) ∧ ( x3 )
• 3-CNF:  

{ < φ > | φ is a CNF formula in which each clause has
exactly 3 literals }

• CNF-SAT: { < φ > | φ is a satisfiable CNF formula } 
• 3-SAT: { < φ > | φ is a satisfiable 3-CNF formula }

= SAT ∩ 3-CNF
• Theorem: 3SAT is NP-hard.
• Proof: Show CNF-SAT is NP-hard, and CNF-SAT ≤p

3SAT.



CNF-SAT is NP-hard
• Theorem:  CNF-SAT is NP-hard.
• Proof:

– We won’t show SAT ≤p CNF-SAT.
– Instead, modify the proof that SAT is NP-hard, so that it 

shows A ≤p CNF-SAT, for an arbitrary A in NP, instead 
of just A ≤p SAT as before.

– We’ve almost done this:  formula φw is almost in CNF.
– It’s a conjunction φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove.
– And each of these is itself in CNF, except φmove .
– φmove is:

• a conjunction over all (i,j)
• of disjunctions over all tiles
• of conjunctions of 6 conditions on the 6 cells:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3 



CNF-SAT is NP-hard
• Show A ≤p CNF-SAT.
• φw is a conjunction φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove, where 

each is in CNF, except φmove .
• φmove is:

– a conjunction ( ∧ ) over all (i,j)
– of disjunctions ( ∨ ) over all tiles
– of conjunctions ( ∧ ) of 6 conditions on the 6 cells:

xi,j,a1 ∧ xi,j+1,a2 ∧ xi,j+2,a3 ∧ xi+1,j,b1 ∧ xi+1,j+1,b2 ∧ xi+1,j+2,b3 

• We want just ∧ of ∨.
• Can use distributive laws to replace (∨ of ∧) with (∧ of ∨), 

which would yield overall ∧ of ∨, as needed.
• In general, transforming (∨ of ∧) to (∧ of ∨), could cause 

formula size to grow too much (exponentially).
• However, in this situation, the clauses for each (i,j) have 

total size that depends only on the TM M, and not on w.
• So the size of the transformed formula is still poly in |w|.



CNF-SAT is NP-hard
• Theorem:  CNF-SAT is NP-hard.
• Proof:

– Modify the proof that SAT is NP-hard.
– φw  = φcell  ∧ φstart  ∧ φaccept ∧ φmove.
– Can be put into CNF, while keeping the size of 

the transformed formula poly in |w|.
– Shows that A ≤p CNF-SAT.
– Since A is any language in NP, CNF-SAT is NP-

hard.



3SAT is NP-hard
• Proved: Theorem:  CNF-SAT is NP-hard.
• Now:  Theorem: 3SAT is NP-hard.
• Proof:

– Use reduction, show CNF-SAT ≤p 3SAT.
– Construct f, polynomial-time computable, such that w ∈

CNF-SAT if and only if f(w) ∈ 3SAT.
– If w isn’t a CNF formula, then f(w) isn’t either.
– If w is a CNF formula, then f(w) is another CNF formula, 

this one with 3 literals per clause, satisfiable iff w is 
satisfiable.

– f works by converting each clause to a conjunction of 
clauses, each with ≤ 3 literals (add repeats to get 3).

– Show by example:  (a ∨ b ∨ c ∨ d ∨ e) gets converted to
(a ∨ r1) ∧ (¬ r1 ∨ b ∨ r2) ∧ (¬ r2 ∨ c ∨ r3) ∧ (¬ r3 ∨ d ∨ r4)  
∧ (¬ r4 ∨ e)

– f is polynomial-time computable.



3SAT is NP-hard
• Proof:

– Show CNF-SAT ≤p 3SAT.
– Construct f such that w ∈ CNF-SAT iff f(w) ∈ 3SAT; converts each 

clause to a conjunction of clauses.
– f converts w = (a ∨ b ∨ c ∨ d ∨ e) to f(w) = 
(a ∨ r1) ∧ (¬r1 ∨ b ∨ r2) ∧ (¬r2 ∨ c ∨ r3) ∧ (¬r3 ∨ d ∨ r4)  ∧ (¬r4 ∨ e)
– Claim w is satisfiable iff f(w) is satisfiable.

• ⇒:
– Given a satisfying assignment for w, add values for r1, r2, …, to 

satisfy f(w).
– Start from a clause containing a literal with value 1---there must be 

one---make the new literals in that clause 0 and propagate 
consequences left and right.

– Example:  Above, if c = 1, a = b = d = e = 0 satisfy w, use:
(a ∨ r1) ∧ (¬r1 ∨ b ∨ r2) ∧ (¬r2 ∨ c ∨ r3) ∧ (¬r3 ∨ d ∨ r4)  ∧ (¬r4 ∨ e)
0    1          0     0    1          0    1    0          1  0    0          1     0



3SAT is NP-hard
• Proof:

– Show CNF-SAT ≤p 3SAT.
– Construct f such that w ∈ CNF-SAT iff f(w) ∈ 3SAT; 

converts each clause to a conjunction of clauses.
– f converts w = (a ∨ b ∨ c ∨ d ∨ e) to f(w) = 
(a ∨ r1) ∧ (¬r1 ∨ b ∨ r2) ∧ (¬r2 ∨ c ∨ r3) ∧ (¬r3 ∨ d ∨ r4)  ∧

(¬r4 ∨ e)
– Claim w is satisfiable iff f(w) is satisfiable.

• ⇐:
– Given satisfying assignment for f(w), restrict to satisfy w.
– Each ri can make only one clause true.
– There’s one fewer ri than clauses; so some clause must 

be made true by an original literal, i.e., some original 
literal must be true, satisfying w.



3SAT is NP-hard
• Theorem:  CNF-SAT is NP-hard.
• Theorem: 3SAT is NP-hard.
• Proof:

– Constructed polynomial-time-computable f such 
that w ∈ CNF-SAT iff f(w) ∈ 3SAT.

– Thus, CNF-SAT ≤p 3SAT.
– Since CNF-SAT is NP-hard, so is 3SAT.



CLIQUE and VERTEX-COVER are 
NP-Complete



CLIQUE and VERTEX-COVER
• CLIQUE = { < G, k > | G is a graph with a k-clique }
• k-clique: k vertices with edges between all pairs in 

the clique.
• Theorem: CLIQUE is NP-complete.
• Proof:

– CLIQUE ∈ NP, already shown.
– To show CLIQUE is NP-hard, show 3SAT ≤p CLIQUE. 
– Need poly-time-computable f, such that w ∈ 3SAT iff f(w) 

∈ CLIQUE.
– f must map a formula w in 3-CNF to <G, k> such that w is 

satisfiable iff G has a k-clique.
– Show by example:  

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 



CLIQUE is NP-hard
• Proof:

– Show 3SAT ≤p CLIQUE; construct f such that w ∈ 3SAT 
iff f(w) ∈ CLIQUE.

– f maps a formula w in 3-CNF to <G, k> such that w is 
satisfiable iff G has a k-clique.

– (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 
– Graph G: Nodes for all (clause, literal) pairs, edges 

between all non-contradictory nodes in different 
clauses.

– k: Number of clauses
x1 x2 x3

¬x1

¬x2

¬x3¬x1

x2

¬x3

C1

C2
C3



CLIQUE is NP-hard
• Graph G: Nodes for all (clause, literal) pairs, edges 

between all non-contradictory nodes in different clauses.
• k: Number of clauses

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 
• Claim (general):  w satisfiable iff G has a k-clique.

x1 x2 x3

¬x1

¬x2

¬x3¬x1

x2

¬x3

C1

C2C3

• ⇒:  
– Assume the formula is 

satisfiable.
– Satisfying assignment 

gives one literal in 
each clause, all with 
non-contradictory 
assignments.

– Yields a k-clique.



CLIQUE is NP-hard
• Example:

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 
• Satisfiable, with satisfying assignment x1 = 1,  x2 = x3= 0
• Yields 3-clique:

x1 x2 x3

¬x1

¬x2

¬x3¬x1

x2

¬x3

C1

C2C3

• ⇒:  
– Assume the formula is 

satisfiable.
– Satisfying assignment 

gives one literal in 
each clause, all with 
non-contradictory 
assignments.

– Yields a k-clique.



CLIQUE is NP-hard
• Graph G: Nodes for all (clause, literal) pairs, edges 

between all non-contradictory nodes in different clauses.
• k: Number of clauses

(x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 
• Claim (general):  w satisfiable iff G has a k-clique.

x1 x2 x3

¬x1

¬x2

¬x3¬x1

x2

¬x3

C1

C2C3

• ⇐:  
– Assume a k-clique.
– Yields one node per 

clause, none 
contradictory.

– Yields a consistent 
assignment satisfying 
all clauses of w.



CLIQUE is NP-hard
• Graph G: Nodes for all (clause, literal) pairs, edges 

between all non-contradictory nodes in different clauses.
• k: Number of clauses
• Claim (general):  w satisfiable iff G has a k-clique.

• So, 3SAT ≤p CLIQUE.
• Since 3SAT is NP-hard, 

so is CLIQUE.
• So CLIQUE is NP-complete. x1 x2 x3

¬x1

¬x2

¬x3¬x1

x2

¬x3

C1

C2C3



VERTEX-COVER is NP-complete
• VERTEX-COVER = 

{ < G, k > | G is a graph with a vertex cover of size k }
• Vertex cover of G = (V, E):  A subset C of V such 

that, for every edge (u,v) in E, either u or v ∈ C.
• Theorem: VERTEX-COVER is NP-complete.
• Proof:

– VERTEX-COVER ∈ NP, already shown.
– Show VERTEX-COVER is NP-hard.
– That is, if A ∈ NP, then A ≤p VERTEX-COVER. 
– We know A ≤p CLIQUE, since CLIQUE is NP-hard.
– Recall CLIQUE ≤p VERTEX-COVER. 
– By transitivity of ≤p, A ≤p VERTEX-COVER, as needed.



VERTEX-COVER is NP-complete
• Theorem: VERTEX-COVER is NP-complete.
• More succinct proof:

– VC ∈ NP; show VC is NP-hard.
– CLIQUE is NP-hard.
– CLIQUE ≤p VC. 
– So VC is NP-hard.

• In general, can show language B is NP-complete by:
– Showing B ∈ NP, and
– Showing  A ≤p B for some known NP-hard problem A. 



More Examples



More NP-Complete Problems
• [Garey, Johnson] show hundreds of problems are 

NP-complete.
• All but 3SAT use the polynomial-time reduction 

method.
• Examples: 3SAT

CLIQUE HAMILTONIAN 
PATH/CIRCUIT

VERTEX-
COVER TRAVELING

SALESMAN

SUBSET-
SUM

SET 
PARTITION

MULTIPROCESSOR
SCHEDULING

Etc.



More NP-Complete Problems

• A  → B means A ≤p B.
• Hardness propagates to the right in ≤p, downward along 

tree branches.

3SAT

CLIQUE HAMILTONIAN 
PATH/CIRCUIT

VERTEX-
COVER TRAVELING

SALESMAN

SUBSET-
SUM

SET 
PARTITION

MULTIPROCESSOR
SCHEDULING

Etc.

As we just
showed. Will do this now.

Recitation?



3SAT ≤p HAMILTONIAN 
PATH/CIRCUIT



3SAT ≤p HAMILTONIAN PATH/CIRCUIT
• Two versions of the problem, for directed and undirected 

graphs.
• Consider directed version; undirected shown by reduction 

from directed version.
• DHAMPATH = { <G, s, t> | G is a directed graph, s and t 

are two distinct vertices, and there is a path from s to t in G 
that passes through each vertex of G exactly once }

• DHAMPATH ∈ NP: Guess path and verify.
• 3SAT ≤p DHAMPATH:  

3SAT

3CNF Digraph, s,t
f

f DHAMPATH



3SAT ≤p HAMILTONIAN PATH/CIRCUIT
• DHAMPATH = { <G, s, t> | G is a directed graph, s and t 

are two distinct vertices, and there is a path from s to t in G 
that passes through each vertex of G exactly once }

• 3SAT ≤p DHAMPATH: 
– Map a 3CNF formula φ to <G, s, t> so that φ is satisfiable if and only 

if G has a Hamiltonian path from s to t.
– In fact, there will be a direct correspondence between a satisfying 

assignment for φ and a Hamiltonian path in G.

3SAT

3CNF Digraph, s,t
f

f DHAMPATH



3SAT ≤p DHAMPATH
• Map a 3CNF formula φ to <G, s, t> so that φ is satisfiable if 

and only if G has a Hamiltonian path from s to t.
• Correspondence between satisfying assignment for φ and 

Hamiltonian path in G.
• Notation:  

– Write φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ … ∧ (ak ∨ bk ∨ ck) 
– k clauses C1, C2, …, Ck
– Variables:  x1, x2,…, xl
– Each aj, bj, and cj is either some xi or some ¬xi.

• Digraph is constructed from pieces (gadgets), one for each 
variable xi and one for each clause Cj.

• Gadget for variable xi:

Row contains 3k+1 nodes,
not counting endpoints. 



3SAT ≤p DHAMPATH
• Notation:  

– φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ … ∧ (ak ∨ bk ∨ ck) 
– k clauses C1, C2, …, Ck
– Variables:  x1, x2,…, xl
– Each aj, bj, and cj is either some xi or some ¬xi.

• Gadget for variable xi:

• Can get from top node to bottom node in two ways:

or

• Both ways visit all intermediate nodes.



3SAT ≤p DHAMPATH
• Notation:  

– φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ … ∧ (ak ∨ bk ∨ ck) 
– k clauses C1, C2, …, Ck

– Variables:  x1, x2,…, xl

– Each aj, bj, and cj is either some xi or some ¬xi.
• Gadget for variable xi:

• Gadget for clause Cj:
– Just a single node.  

• Putting the pieces together:  
– Put variables’ gadgets in order x1, x2, …, xl, top to bottom, 

identifying bottom node of each gadget with top node of the next.
– Make s and t the overall top and bottom node, respectively

Cj



3SAT ≤p DHAMPATH
• Putting the pieces 

together:  
– Put variables’ gadgets 

in order x1, x2, …, xl, 
identifying bottom 
node of each with top 
node of the next.

– Make s and t the 
overall top and bottom 
node.

• We still must connect 
x-gadgets with C-
gadgets.

C1

C2

Ck

s

t



3SAT ≤p DHAMPATH
• We still must connect x-gadgets with C-gadgets.
• Divide the 3k+1 nodes in the cross-bar of xi’s gadget into k 

pairs, one per clause, separated by k+1 separator nodes:

C1 C2 Ck

• If xi appears in Cj, add edges between the 
Cj node and the nodes for Cj in the 
crossbar, going from left to right. 
– Allows detour to Cj while traversing crossbar 

left-to-right.
Cj

Cj



3SAT ≤p DHAMPATH

C1 C2 Ck

• If xi appears in Cj, add edges L to R. 
– Allows detour to Cj while traversing crossbar L to R.

• If ¬xi appears in Cj, add edges R to L. 
– Allows detour to Cj while traversing crossbar R to L.

• If both xi and ¬xi appear, add both sets of 
edges.

• This completes the construction of G, s, t.

Cj

Cj

Cj

Cj



Example
• φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ ¬x3) 

C1

C2

C3

s

t

x1

x3

x2

x1

x2

x3



Example
• φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ … ∧ (¬x1 ∨ x2 ∨ ¬x3) 

C1

C2

C3

s

t

x1

x3

x2

¬x1

¬x2

¬x3



Example
• φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ … ∧ (¬x1 ∨ x2 ∨ ¬x3) 

C1

C2

C3

s

t

x1

x3

x2

¬x1

x2

¬ x3



The entire graph G
• φ = (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3) ∧ … ∧ (¬x1 ∨ x2 ∨ ¬x3) 

C1

C2

C3

s

t

x1

x3

x2

¬x1

x2

¬ x3

¬x1

¬x2

¬x3

x1

x2

x3



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof:  ⇒

– Assume φ is satisfiable; fix a particular satisfying assignment.
– Follow path top-to-bottom, going

• L to R through gadgets for xis that are set true.
• R to L through gadgets for xis that are set false.

– This visits all nodes of G except the Cj nodes.
– For these, we must take detours.
– For any particular clause Cj:

• At least one of its literals must be set true; pick one.
• If it’s of the form xi, then do:

• Works since xi = true means we traverse this crossbar L to R.

Cj

Cj pair in xi row



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof: ⇒

– Assume φ is satisfiable; fix a particular satisfying assignment.
– Follow path top-to-bottom, going

• L to R through gadgets for xis that are set true.
• R to L through gadgets for xis that are set false.

– This visits all nodes of G except the Cj nodes.
– For these, we must take detours.
– For any particular clause Cj:

• At least one of its literals must be set true; pick one.
• If it’s of the form ¬xi, then do:

• Works since xi = false means we traverse this crossbar R to L.

Cj

Cj pair in xi row



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof: ⇐

– Assume G has a Hamiltonian path from s to t, get a satisfying 
assignment for φ.

– If the path is “normal” (goes in order through the gadgets, top to 
bottom, going one way or the other through each crossbar, and 
detouring to pick up the Cj nodes), then define the assignment by:
Set each xi true if path goes L to R through xi’s gadget, false if it 
goes R to L.

Cj

Cj pair in xi row

Cj

Cj pair in xi row

– Why is this a satisfying assignment 
for φ?

– Consider any clause Cj.
– The path goes through its node in 

one of two ways:



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof: ⇐

– Assume G has a Hamiltonian path from s to t, get a satisfying 
assignment for φ.

– If the path is “normal”, then define the assignment by:
Set each xi true if path goes L to R through xi’s gadget, false if it 
goes R to L.

Cj

Cj pair in xi row

Cj

Cj pair in xi row

– To see that this satisfies φ, consider 
any clause Cj.

– The path goes through Cj’s node by:
– If the first, then:

• xi is true, since path goes L-R.
• By the way the detour edges are 

set, Cj contains literal xi.
• So Cj is satisfied by xi.

or



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof: ⇐

– Assume G has a Hamiltonian path from s to t, get a satisfying 
assignment for φ.

– If the path is “normal”, then define the assignment by:
Set each xi true if path goes L to R through xi’s gadget, false if it 
goes R to L.

Cj

Cj pair in xi row

Cj

Cj pair in xi row

– To see that this satisfies φ, consider 
any clause Cj.

– The path goes through Cj’s node by:
– If the second, then:

• xi is false, since path goes R-L.
• By the way the detour edges are 

set, Cj contains literal ¬xi.
• So Cj is satisfied by ¬xi.

or



3SAT ≤p DHAMPATH
• Claim: φ is satisfiable iff the graph G has a Hamiltonian 

path from s to t.
• Proof: ⇐

– Assume G has a Hamiltonian path from s to t.
– If the path is normal, then it yields a satisfying assignment.
– It remains to show that the path is normal (goes in order through 

the gadgets, top to bottom, going one way or the other through 
each crossbar, and detouring to pick up the Cj nodes), 

– The only problem (hand-waving) is if a detour doesn’t work right, 
but jumps from one gadget to another, e.g.:

– But then the Ham. path could never reach a2:

xi

xi’

Cj

a1 a2 a3

• Can reach a2 only from a1, a3, 
and (possibly) Cj.

• But a1 and Cj already lead 
elsewhere.

• And reaching a2 from a3 leaves 
nowhere to go from a2, stuck.



Summary:  DHAMPATH
• We have proved 3SAT ≤p

DHAMPATH.
• So DHAMPATH is NP-complete.
• Can prove similar result for 

DHAMCIRCUIT = { <G> | G is a 
directed graph, and there is a circuit in 
G that passes through each vertex of 
G exactly once }

• Theorem:  3SAT ≤p DHAMCIRCUIT.
• Proof:

– Same construction, but wrap around, 
identifying s and t nodes.

– Now a satisfying assignment for φ
corresponds to a Hamiltonian circuit.

s

s

Identify these two s nodes.



UHAMPATH and UHAMCIRCUIT
• Same questions about paths/circuits in undirected graphs. 
• UHAMPATH = { <G, s, t> | G is an undirected graph, s and 

t are two distinct vertices, and there is a path from s to t in 
G that passes through each vertex of G exactly once }

• UHAMCIRCUIT = { <G> | G is an undirected graph, and 
there is a circuit in G that passes through each vertex of G 
exactly once }

• Theorem: Both are NP-complete.
• Obviously in NP.
• To show NP-hardness, reduce the digraph versions of the 

problems to the undirected versions---no need to consider 
Boolean formulas again.
– DHAMPATH ≤p UHAMPATH
– DHAMCIRCUIT ≤p UHAMCIRCUIT



DHAMPATH ≤p UHAMPATH
• UHAMPATH = { <G, s, t> | G is an undirected graph, s and 

t are two distinct vertices, and there is a path from s to t in 
G that passes through each vertex of G exactly once }

• Map <G, s, t> (directed) to <G′, s′, t ′> (undirected) so that 
<G, s, t> ∈ DHAMPATH iff <G′, s′, t ′> ∈ UHAMPATH. 

• Example:

s

v

u

t

w ⇒

t1

s3

u3

u2

u1

v3

v2

v1

w3

w2

w1



DHAMPATH ≤p UHAMPATH

• In general:
– Replace each vertex x other than s, t with vertices x1, x2, x3, connected 

in a line.   
– Replace s with just s3, t with just t1.    
– For each directed edge from x to y in G, except incoming edges of s 

and outgoing edges of t, include undirected edge between x3 and y1.
– Don’t include anything for incoming edges of s or outgoing edges of t---

not needed since they can’t be part of a Ham. path in G from s to t.         
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DHAMPATH ≤p UHAMPATH

• In general:
– Replace each vertex x other than s, t with x1---x2---x3.
– Replace s with s3, t with t1.    
– For each directed edge from x to y in G, except incoming edges of s 

and outgoing edges of t, include x3---y1.
• G′ = the resulting undirected graph; s′ = s3; t′ = t1
• Claim G has directed Hamiltonian path from s to t iff G′ has 

an undirected Hamiltonian path from s′ to t′.
• Idea:  Indices 1,2,3 enforce consistent direction of traversal.
• Proof LTTR (in book).
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Summary:  UHAMPATH
• We have proved DHAMPATH ≤p UHAMPATH.
• So UHAMPATH is NP-complete.
• Can prove similar result for

UHAMCIRCUIT = { <G> | G is an undirected 
graph, and there is a circuit in G that passes 
through each vertex of G exactly once }

• Theorem:  DHAMCIRCUIT ≤p UHAMCIRCUIT.
• Proof:

– Similar construction.



The Traveling Salesman Problem



Traveling Salesman Problem (TSP)
• Variant of UHAMCIRCUIT.
• n cities = vertices, in a complete (undirected) graph.
• Each edge (u,v) has a cost, c(u,v), a nonnegative integer.
• Salesman should visit all cities, each just once, at low cost.
• Express as a language:  

TSP = { <G, c, k> | G = (V,E) is a complete graph, c: E → N, 
k ∈ N, and G has a cycle visiting each node exactly once, 
with total cost ≤ k }

• Theorem: TSP is NP-complete.
• Proof:

– TSP ∈ NP:  Guess tour and verify.
– TSP is NP-hard:  Show UHAMCIRCUIT ≤p TSP.
– Map <G> (undirected graph) to <G′, c′, k′> so that G has a Ham. 

circuit iff G′ with cost function c′ has a tour of total cost at most k′.



UHAMCIRCUIT ≤p TSP
• TSP = { <G, c, k> | G = (V,E) is a complete graph, c: E →

N, k ∈ N, and G has a cycle visiting each node exactly 
once, with total cost ≤ k }

• Map <G> (undirected graph) to <G′, c′, k′> so that G has a 
Ham. circuit iff G′ with cost function c′ has a tour of total 
cost ≤ k′.

• Define mapping so that a Ham. circuit corresponds closely 
with a tour of cost ≤ k′.
– G′ = (V′, E′), where V′ = V, all vertices of G, E′ = all edges 

(complete graph).
– c′(u,v) = 1 if (u, v) ∉ E, 0 if (u,v) ∈E.
– k′ = 0.

• Example:
u

v

w

x

⇒ u

v

w

x

1
0

00

00



UHAMCIRCUIT ≤p TSP
• TSP = { <G, c, k> | G = (V,E) is a complete graph, 

c: E → N, k ∈ N, and G has a cycle visiting each 
node exactly once, with total cost ≤ k }

• Map <G> (undirected graph) to <G′, c′, k′>:
– G′ = (V′, E′), where V′ = V, all vertices of G, E′ = all 

edges (complete graph).
– c′(u,v) = 1 if (u, v) ∉ E, 0 if (u,v) ∈E.
– k′ = 0.

• Claim:  G has a Ham. circuit iff G′ with cost 
function c′ has a tour of total cost ≤ k′.

• Proof:
⇒ If G has a Ham. circuit, all its edges have cost 0 in G′

with c′, so we have a circuit of cost 0 in G′.
⇐ Tour of cost 0 in G′ must consist of edges of cost 0, 

which are edges in G.



More Examples, Revisited



SUBSET-SUM
• SUBSET-SUM = {<S,t> | S is a multiset of 

N, t ∈N, and t is expressible as the sum of 
some of the elements of S }

• Example: S = { 2, 2, 4, 5, 5, 7 }, t = 13
<S, t > ∈ SUBSET-SUM, because 7 + 4 + 2 = 13

• Theorem: SUBSET-SUM is NP-complete.
• Proof:  

– Show 3SAT ≤p SUBSET-SUM.
– Tricky, detailed, see book.



PARTITION
• PARTITION = { <S> | S is a multiset of N and S 

can be split into multisets S1 and S2 having equal 
sums }

• Example: S = { 2, 2, 4, 5, 5, 7 }
S ∉ PARTITION, since the sum is odd

• Example: T = { 2, 2, 5, 6, 9, 12 } 
T ∈ PARTITION, since 2 + 2 + 5 + 9 = 6 + 12.

• Theorem: PARTITION is NP-complete.
• Proof:

– Show SUBSET-SUM ≤p PARTITION.
– Simple…in recitation?



MULTIPROCESSOR SCHEDULING
• MPS = { <S, m, D > | 

– S is a multiset of N (represents durations for 
tasks),

– m ∈ N (number of processors), and
– D ∈ N  (deadline),
and S can be written as S1  ∪ S2  ∪ …  ∪ Sm such 

that, for every i, sum(Si) ≤ D }
• Theorem: MPS is NP-complete.
• Proof:

– Show PARTITION ≤p MPS.
– Simple…in recitation?



Next time…

• Probabilistic Turing Machines and 
Probabilistic Time Complexity Classes

• Reading:
– Sipser Section 10.2
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