
6.080/6.089 GITCS April 4th, 2008 

Lecture 16 
Lecturer: Scott Aaronson Scribe: Jason Furtado 

Private-Key Cryptography 

1 Recap 

1.1 Derandomization 

In the last six years, there have been some spectacular discoveries of deterministic algorithms, 
for problems for which the only similarly-efficient solutions that were known previously required 
randomness. The two most famous examples are 

the Agrawal-Kayal-Saxena (AKS) algorithm for determining if a number is prime or composite • 
in deterministic polynomial time, and 

the algorithm of Reingold for getting out of a maze (that is, solving the undirected s-t con­• 
nectivity problem) in deterministic LOGSPACE. 

Beyond these specific examples, mounting evidence has convinced almost all theoretical com­
puter scientists of the following 
Conjecture: Every randomized algorithm can be simulated by a deterministic algorithm with at 
most polynomial slowdown. Formally, P = BP P . 

1.2 Cryptographic Codes 

1.2.1 Caesar Cipher 

In this method, a plaintext message is converted to a ciphertext by simply adding 3 to each letter, 
wrapping around to A after you reach Z. This method is breakable by hand. 

1.2.2 One-Time Pad 

The “one-time pad” uses a random key that must be as long as the message we want to en­
crypt. The exclusive-or operation is performed on each bit of the message and key (Msg ⊕ Key = 
EncryptedMsg) to end up with an encrypted message. The encrypted message can be decrypted 
by performing the same operation on the encrypted message and the key to retrieve the message 
(EncryptedMsg⊕Key = Msg). An adversary that intercepts the encrypted message will be unable 
to decrypt it as long as the key is truly random. 

The one-time pad was the first example of a cryptographic code that can proven to be secure, 
even if the adversary has all the computation time in the universe. 

The main drawback of this method is that keys can never be reused, and the key must be the 
same size as the message to encrypt. If you were to use the same key twice, an eavesdropper could 
compute (Enc ⊕ Msg1) ⊕ (Enc ⊕ Msg2) = Msg1 ⊕ Msg2. This would leak information about 
Msg1 and Msg2. 

16-1 



Example. Suppose Msg1 and Msg2 were bitmaps and Msg1 had sections that were all the 
same (say, a plain white background). For simplicity, assume Msg1 is all zeros at bit positions 
251-855. Then Msg2 will show through in those bit positions. During the Cold War, spies were 
actually caught using this sort of technique. 

Also, note that the sender and the recipient must agree on the key in advance. Having shared 
random keys available for every possible message size is often not practical. Can we create encryp­
tion methods that are secure with smaller keys, by assuming our adversary doesn’t have unlimited 
computing power (say, is restricted to running polynomial-time algorithms)? 

2 Pseudorandom Generators 

A pseudorandom generator (PRG) is a function that takes as input a short, truly random string 
(called the seed) and produces as output a long, seemingly random string. 

2.1 Seed Generation 

A seed is a “truly” random string used as input to a PRG. How do you get truly random numbers? 
Some seeds used are generated from the system time, typing on a keyboard randomly, the last 
digits of stock prices, or mouse movements. There are subtle correlations in these sources so they 
aren’t completely random, but there are ways of extracting randomness from weak random sources. 
For example, according to some powerful recent results, nearly “pure” randomness can often be 
extracted from two or more weak random sources that are assumed to be uncorrelated with each 
other. 

How do you prove that a sequence of numbers is random? Well, it’s much easier to give 
overwhelming evidence that a sequence is not random! In general, one does this by finding a 
pattern in the sequence, i.e. a computable description with fewer bits than the sequence itself. (In 
other words, by showing that the sequence has less-than-maximal Kolmogorov complexity.) 

In this lecture, we’ll simply assume that we have a short random seed, and consider the problem 
of how to expand it into a long “random-looking” sequence. 

2.2 How to Expand Random Numbers 

2.2.1 Linear-Congruential Generator 

In most programming languages, if you ask for random numbers what you get will be something 
like the following (starting from integers a, b, and N): 

x1 = ax0 + b mod N x2 = ax1 + b mod N 
... 
xn = axn−1 + b mod N 
This process is good enough for many non-cryptographic applications, but an adversary could 

easily distinguish the sequence x0, x1, . . . from random by solving a small system of equations mod 
N . For cryptography applications, it must not be possible for an adversary to figure out a pattern 
in the output of the generator in polynomial time. Otherwise, the system is not secure. 

2.2.2 Cryptographic Pseudorandom Generator (CPRG) 

Definition: (Yao 1982) 

16-2 



��


A cryptographic pseudorandom generator (CPRG) is a function f : {0, 1}n → {0, 1}n+1 such 
that: 

1. f is computable in polynomial time. 

2. For all polynomial-time algorithms A (adversaries), 


Pry∈{0,1}n+1 [A(y) accepts] − Prx∈{0,1}n [A(f(x)) accepts] 
�� 
,


the “advantage”, is negligibly small. 

In other words, the output of the CPRG must “look random” to any polynomial time algorithm. 
In the above definition, “negligibly small” means less than 1/p(n) for all polynomials p. This 

is a minimal requirement, since if the advantage of the adversary were 1/p(n), then in polynomial 
time the adversary could amplify the advantage to a constant (see Lecture 14). Of course it’s even 
better if the adversary’s advantage decreases exponentially. 

The definition above only requires f to stretch an n-bit seed into a random-looking (n + 1)-bit 
string. Could we use such an f to stretch an n-bit seed into, say, a random-looking n2-bit string? 
It turns out that the answer is yes; basically we feed f its own output n2 times. (See Lecture 17 
for more details.) 

2.2.3 Enhanced One-Time Pad 

Using such a CPRG f : {0, 1}n → {0, 1}p(n), we can make our one-time pad work for messages 
polynomially larger than the original key s: 

k = f(s) 
e = x ⊕ k 
x = e ⊕ k 
Claim. With this construction, no polynomial-time adversary can recover the plaintext from 

the ciphertext. 
Proof. Assume for simplicity that the plaintext consists of just a single repeated random bit 

(i.e., is either 00 0 or 11 1, both with equal probability). Also, suppose by way of contradiction · · · · · · 
that a polynomial-time adversary could guess the plaintext given the ciphertext, with probability 
non-negligibly greater than 1/2. We know that if the key k were truly random, then the adversary 
would not be able to guess the plaintext with probability greater than 1/2. But this means that the 
adversary must be distinguishing a pseudorandom key from a truly random key with non-negligible 
bias – thereby violating the assumption that f was a CPRG! 

The system above is not yet a secure cryptographic system (we still need to deal with the issue 
of repeated keys, etc.), but hopefully this gives some idea of how CPRG’s can be used to construct 
computationally-secure cryptosystems. 

3 Blum-Blum-Shub CPRG 

The Blum-Blum-Shub (BBS) CPRG is proven to breakable if and only if a fast (polynomial-time) 
algorithm exists for factoring. With this generator, the seed consists of integers x and N = pq, where 
p, q are large primes. The output consists of the last bit of x2 mod N , the last bit of (x2)2 mod N , 
the last bit of ((x2)2)2 mod N , etc. 

16-3 



� 4 P = NP -based CPRG 

Ideally, we would like to construct a CPRG or cryptosystem whose security was based on an 
NP-complete problem. Unfortunately, NP-complete problems are always about the worst case. 
In cryptography, this would translate to a statement like “there exists a message that’s hard to 
decode”, which is not a good guarantee for a cryptographic system! A message should be hard to 
decrypt with overwhelming probability. Despite decades of effort, no way has yet been discovered 
to relate worst case to average case for NP-complete problems. And this is why, if we want 
computationally-secure cryptosystems, we need to make stronger assumptions than P =� NP . 

5 One-Way Functions 

The existence of one-way functions (OWF’s) is such a stronger assumption. 
Definition: A one-way function is a function f : {0, 1}n → {0, 1}p(n) such that: 

1. f is computable in polynomial time. 

2. For all polynomial-time algorithmss A, 

Prx∈{0,1}n [f(A(f(x))) = f(x)] 

is negligible. 

In other words, a polynomial-time algorithm should only be able to invert f with negligible 
probability. The reason we don’t require A(f(x)) = x is to rule out trivial “one-way functions” like 
f(x) = 1. 

CPRG OWF ?⇒ 

True. Any CPRG is also an OWF by the following argument: if given the output of a pseudorandom 
generator we could efficiently find the seed, then we’d be distinguishing the output from true 
randomness – thereby violating the assumption that we had a CPRG in the first place. 

OWF CPRG?⇐⇒ 

Also true, but this direction took over 20 years to prove! In 1997, H̊astad, Impagliazzo, Levin, 
and Luby showed how to construct a pseudorandom generator from any one-way function, by a 
complicated reduction with many steps. 

16-4
 



MIT OpenCourseWare
http://ocw.mit.edu 

6.045J / 18.400J Automata, Computability, and Complexity 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



