
6.045:  Automata, Computability, and 
Complexity
Or, GITCS

Class 12
Nancy Lynch



Today:  Complexity Theory
• First part of the course:  Basic models of computation

– Circuits, decision trees
– DFAs, NFAs:

• Restricted notion of computation:  no auxiliary memory, just one
pass over input.

• Yields restricted class of languages:  regular languages.
• Second part:  Computability

– Very general notion of computation.
– Machine models like Turing machines, or programs in general 

(idealized) programming languages.
– Unlimited storage, multiple passes over input, compute arbitrarily 

long, possibly never halt.
– Yields large language classes:  Turing-recognizable = enumerable, 

and Turing-decidable.
• Third part:  Complexity theory



Complexity Theory
• First part of the course:  Basic models of computation
• Second part:  Computability
• Third part:  Complexity theory

– A middle ground.
– Restrict the general TM model by limiting its use of resources:

• Computing time (number of steps).
• Space = storage (number of tape squares used).

– Leads to interesting subclasses of the Turing-decidable languages, 
based on specific bounds on amounts of resources used.

– Compare:
• Computability theory answers the question “What languages 

are computable (at all)?”
• Complexity theory answers “What languages are computable 

with particular restrictions on amount of resources?”



Complexity Theory
• Topics

– Examples of time complexity analysis (informal).
– Asymptotic function notation:  O, o, Ω, Θ
– Time complexity classes
– P, polynomial time
– Languages not in P
– Hierarchy theorems 

• Reading:
– Sipser, Sections 7.1, 7.2, and a bit from 9.1.

• Next:
– Midterm, then Section 7.3 (after the break).



Examples of time complexity 
analysis



Examples of time complexity analysis
• Consider a basic 1-tape Turing machine M that decides 

membership in the language L = {0k1k | k ≥ 0}:
– M first checks that its input is in 0*1*, using one left-to-right pass.
– Returns to the beginning (left).
– Then does repeated passes, each time crossing off one 0 and one 

1, until it runs out of at least one of them.
– If it runs out of both on the same pass, accepts, else rejects.

• Q: How much time until M halts?
• Depends on the particular input.
• Example:  0111…1110 (length n)

– Approximately n steps to reject---not in 0*1*, 
• Example:  00…011…1  (n/2 0s and n/2 1s)

– Approximately (at most) 2n + (n/2) 2n = 2n + n2 steps to accept.

Initial 
check

Number of
passes

Upper bound on steps 
For one pass



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• Time until M halts depends on the particular input.
• 0111…1110 (length n)

– Approximately n steps to reject---not in 0*1*, 
• 00…011…1  (n/2 0s and n/2 1s)

– Approximately (at most) 2n + n2 steps to accept.
• It’s too complicated to determine exactly how many steps 

are required for every input.
• So instead, we:

– Get a close upper bound, not an exact step count.
– Express the bound as a function of the input length n, thus grouping 

together all inputs of the same length and considering the max.
– Often ignore constant factors and low-order terms.

• So, we describe the time complexity of M as O(n2).
– At most some constant times n2.



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• Time complexity of machine M = O(n2).
• Q:  Can we do better with a multitape machine?
• Yes, with 2 tapes:

– After checking 0*1*, the machine copies the 0s to the 
second tape.

– Then moves 2 heads together, one scanning the 0s on 
the second tape and one scanning the 1s on the first 
tape.

– Check that all the symbols match.
– Time O(n), proportional to n.



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• 1-tape machine:  O(n2), 2-tape machine:  O(n).
• Q:  Can we beat O(n2) with a 1-tape machine?
• Yes, can get O(n log n):

– First check 0*1*, as before, O(n) steps.
– Then perform marking phases, as long as some unmarked 0 and 

some unmarked 1 remain.
– In each marking phase:

• Scan to see whether # of unmarked 0s  ≡ # of unmarked 1s, mod 2.
– That is, see whether they have the same parity.

• If not, then reject, else continue.
• Scan again, marking every other 0 starting with the first and every 

other 1 starting with the first.
– After all phases are complete:

• If just 0s or just 1s remain, then reject
• If no unmarked symbols remain, then accept.



Time complexity analysis
• O(n log n) algorithm:

– Check 0*1*.
– Perform marking phases, as long as some unmarked 0 and some 

unmarked 1 remain.
– In each marking phase:

• Scan to see if # of unmarked 0s  ≡ # of unmarked 1s, mod 2; if not, 
then reject, else continue.

• Scan again, marking every other 0 starting with the first and every 
other 1 starting with the first.

– If just 0s or just 1s remain, then reject, else accept.
• Example: 00…011…1 (25 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 12 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 6, 6.
– Phase 3:  Same parity (even), marking leaves 3, 3.
– Phase 4:  Same parity (odd), marking leaves 1,1.
– Phase 5:  Same parity (odd), marking leaves 0,0
– Accept



Time complexity analysis
• Example: 00…011…1 (25 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 12 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 6, 6.
– Phase 3:  Same parity (even), marking leaves 3, 3.
– Phase 4:  Same parity (odd), marking leaves 1,1.
– Phase 5:  Same parity (odd), marking leaves 0,0
– Accept

• Odd parity leads to remainder 1 on division by 2, even 
parity leads to remainder 0.

• Can read off odd-even parity designations to get binary 
representations of the numbers, starting with final phase 
for high-order bit:
– 5:  odd; 4:  odd; 3: even; 2: even; 1: odd
– Yields 1 1 0 0 1, binary representation of 25

• If the algorithm accepts, it means the 2 numbers have the 
same binary representation, so they are equal.



Time complexity analysis
• Example: 00…011…1 (17 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 8 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 4, 6.
– Phase 3:  Same parity (even), marking leaves 2, 3.
– Phase 4:  Different parity, reject
– Don’t complete this, so don’t generate the complete binary 

representation of either number.



Time complexity analysis
• Algorithm

– Check 0*1*.
– Perform marking phases, as long as some unmarked 0 and some 

unmarked 1 remain.
– In each marking phase:

• Scan to see if # of unmarked 0s  ≡ # of unmarked 1s, mod 2; if 
not, then reject, else continue.

• Scan again, marking every other 0 starting with the first and 
every other 1 starting with the first.

– If just 0s or just 1s remain, then reject, else accept.
• Complexity analysis:

– Number of phases is O(log2 n), since we (approximately) halve the 
number of unmarked 0s and unmarked 1s at each phase.

– Time for each phase:  O(n).
– Total:  O(n log n).

• This analysis is informal; now define O, etc., more carefully 
and then revisit the example.



Asymptotic function notation:
O, o, Ω, Θ



Asymptotic function notation
• Definition:  O (big-O)

– Let f, g be two functions: N → R≥0.
– We write f(n) = O(g(n)), and say “f(n) is big-O of g(n)” if 

the following holds:
• There is a positive real c, and a positive integer n0, 

such that f(n) ≤ c g(n) for every n ≥ n0.
• That is, f(n) is bounded from above by a constant 

times g(n), for all sufficiently large n.
• Often used for complexity upper bounds.
• Example: n + 2 = O(n); can use c = 2, n0 = 2.
• Example: 3n2 + n = O(n2); can use c = 4, n0 = 1.
• Example: Any degree-k polynomial with 

nonnegative coefficients, p(n) = aknk + ak-1nk-1 + 
…+ a1n + a0 = O(nk)
– Thus, 3n4 + 6n2 + 17 = O(n4).



More big-O examples
• Definition:  

– Let f, g: N → R≥0

– f(n) = O(g(n)) means that there is a positive real c, and a 
positive integer n0, such that f(n) ≤ c g(n) for every n ≥
n0.

• Example: 3n4 = O(n7), though this is not the 
tightest possible statement.

• Example: 3n7 ≠ O(n4).
• Example:  log2(n) = O(loge(n)); loga(n) = O(logb(n)) 

for any a and b
– Because logs to different bases differ by a constant 

factor.
• Example: 23+n = O(2n), because 23+n = 8 × 2n

• Example: 3n ≠ O(2n)



Other notation
• Definition:  Ω (big-Omega)

– Let f, g be two functions: N → R≥0

– We write f(n) = Ω(g(n)), and say “f(n) is big-Omega of 
g(n)” if the following holds:

• There is a positive real c, and a positive integer n0, such that 
f(n) ≥ c g(n) for every n ≥ n0.

• That is, f(n) is bounded from below by a positive 
constant times g(n), for all sufficiently large n.

• Used for complexity lower bounds.
• Example: 3n2 + 4n log(n) = Ω(n2)
• Example: 3n7 = Ω(n4).
• Example:  loge(n) = Ω(log2(n))
• Example: 3n = Ω(2n)



Other notation
• Definition:  Θ (Theta)

– Let f, g be two functions: N → R≥0

– We write f(n) = Θ(g(n)), and say “f(n) is Theta of g(n)” if 
f(n) = O(g(n)) and f(n) = Ω(g(n)).

– Equivalently, there exist positive reals c1, c2, and 
positive integer n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for 
every n ≥ n0.

• Example: 3n2 + 4n log(n) = Θ(n2)
• Example: 3n4 = Θ(n4).
• Example: 3n7 ≠ Θ(n4).
• Example:  loge(n) = Θ(log2(n))
• Example: 3n ≠ Θ(2n)



Plugging asymptotics into formulas
• Sometimes we write things like  2Θ(log2n)

• What does this mean?
• Means the exponent is some function f(n) 

that is Θ(log n), that is, c1log(n) ≤ f(n) ≤
c2log(n) for every n ≥ n0.

• So 2c1log(n) ≤ 2Θ(log2n) ≤ 2c2log(n)

• In other words, nc1 ≤ 2Θ(log2n) ≤ nc2

• Same as nΘ(1) .



Other notation
• Definition:  o (Little-o)

– Let f, g be two functions: N → R≥0

– We write f(n) = o(g(n)), and say “f(n) is little-o of g(n)” if 
for every positive real c, there is some positive integer 
n0, such that f(n) < c g(n) for every n ≥ n0.

– In other words, no matter what constant c we choose, 
for sufficiently large n, f(n) is less than g(n).

– In other words, f(n) grows at a slower rate than any 
constant times g(n).

– In other words, limn→∞ f(n)/g(n) = 0.
• Example: 3n4 = o(n7)
• Example: √n = o(n)
• Example: n log n = o(n2)
• Example: 2n = o(3n)



Back to the TM running times…
• Running times (worst case over all inputs of the 

same length n) of the 3 TMs described earlier:
– Simple 1-tape algorithm:  Θ(n2)
– 2-tape algorithm:  Θ(n)
– More clever 1-tape algorithm: Θ(n log n)

• More precisely, consider any Turing machine M 
that decides a language.

• Define the running time function tM(n) to be:
– maxw∈Σn t′M(w), where 
– t′M(w) is the exact running time (number of steps) of M 

on input w.
• Then for these three machines, tM(n) is Θ(n2), 
Θ(n), and Θ(n log n), respectively.



Time Complexity Classes



Time Complexity Classes
• Classify decidable languages according to upper bounds 

on the running time for TMs that decide them.
• Definition: Let t: N → R≥0 be a (total) function.  Then 

TIME(t(n)) is the set of languages:
{ L |  L is decided by some O(t(n))-time Turing machine }

• Call this a “time-bounded complexity class”.
• Notes:

– Notice the O---allows some slack.
– To be careful, we need to specify which kind of TM model we are 

talking about; assume basic 1-tape.
• Complexity Theory studies:

– Which languages are in which complexity classes.
• E.g., is the language PRIMES in TIME(n5)?

– How complexity classes are related to each other.
• E.g., is TIME(n5) = TIME(n6), or are there languages that can be 

decided in time O(n6) but not in time O(n5)?



Time Complexity Classes
• A problem:  Running times are model-dependent.
• E.g., L = {0k1k | k ≥ 0}:

– On 1-tape TM, can decide in time O( n log n).
– On 2-tape TM, can decide in time O(n).

• To be definite, we’ll define the complexity classes in terms 
of 1-tape TMs (as Sipser does); others use multi-tape, or 
other models like Random-Access Machines (RAMs).

• Q: Is this difference important?
• Only up to a point:

– If L ∈ TIME(f(n)) based on any “standard” machine model, then also 
L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some polynomial p, 
based on any other “standard” machine model.

– Running times for L in any two standard models are polynomial-
related.

• Example: Single-tape vs. multi-tape Turing machines



Time Complexity Classes
• If L ∈ TIME(f(n)) based on any “standard” machine model, 

then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some 
polynomial p, based on any other “standard” machine 
model.

• Example: 1-tape vs. multi-tape Turing machines
– 1-tape → multi-tape with no increase in complexity.
– Multi-tape → 1-tape:  If t(n) ≥ n then every t(n)-time multi-tape TM 

has an equivalent O(t2(n))-time 1-tape TM.
– Proof idea:  

• 1-tape TM simulates multi-tape TM.
• Simulates each step of multi-tape TM using 2 scans over non-

blank portion of tapes, visiting all heads, making all changes.
– Q: What is the time complexity of the simulating 1-tape TM?  That 

is, how many steps does the 1-tape TM use to simulate the t(n) 
steps of the multi-tape machine?



Time Complexity Classes
• Example: 1-tape vs. multi-tape Turing machines

– Multi-tape → 1-tape:  If t(n) ≥ n then every t(n)-time multi-tape TM has 
an equivalent O(t2(n))-time 1-tape TM.

– 1-tape TM simulates multi-tape TM; simulates each step using 2 scans 
over non-blank portion of tapes, visiting all heads, making all changes.

– Q:  What is the time complexity of the 1-tape TM?  
– Q:  How big can the non-blank portion of the multi-tape TM’s tapes 

become?
• Initially n, for the input.
• In t(n) steps, no bigger than t(n), because that’s how far the heads 

can travel (starts at left).
– So the number of steps by the 1-tape TM is at most:

t(n)     × c t(n),     hence O(t2(n)).

Number of steps of 
multi-tape machine

Steps taken by the scans,
to emulate one step of the
multi-tape machine.



Time Complexity Classes
• If L ∈ TIME(f(n)) based on any “standard” machine model, 

then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some 
polynomial p, based on any other “standard” machine 
model.

• Slightly-idealized versions of real computers, programs in 
standard languages, other “reasonable” machine models, 
can be emulated by basic TMs with only polynomial 
increase in running time.

• Important exception:  Nondeterministic Turing machines (or 
other nondeterministic computing models)
– For nondeterministic TMs, running time is usually measured by max 

number of steps on any branch.
– A bound of t(n) on the maximum number of steps on any branch 

translates into 2O(t(n)) steps for basic deterministic TMs.



P, Polynomial Time



P, Polynomial Time
• A formal way to define fast computability.
• Because of simulation results, polynomial differences are 

considered to be unimportant for (deterministic) TMs.
• So our definition of fast computability ignores polynomial 

differences.
• Definition: The class P of languages that are decidable in 

polynomial time is defined by:
P = ∪p a poly TIME(p(n)) = ∪k ≥ 0 TIME(nk) 

• Notes:
– These time-bounded language classes are defined with respect to 

basic (1-tape, 1-head) Turing machines.
– Simulation results imply that we could have used any “reasonable”

deterministic computing model and get the same language class.
– Robust notion.



P, Polynomial Time
• Definition:  The class P of languages that are decidable in 

polynomial time is defined by:
P = ∪p a poly TIME(p(n)) = ∪k ≥ 0 TIME(nk) 

• P plays a role in complexity theory loosely analogous to 
that of decidable languages in computability.

• Recall Church-Turing thesis:
– If L is decidable using some reasonable model of computation, then 

it is decidable using any reasonable model of computation.
• Modified Church-Turing thesis:

– If L is decidable in polynomial time using some reasonable 
deterministic model of computation, then it is decidable in 
polynomial time using any reasonable deterministic model of 
computation.

• This is not a theorem---rather, a philosophical statement.
• Can think of this as defining what a reasonable model is.
• We’ll focus on the class P for much of our work on 

complexity theory.



P, Polynomial Time
• We’ll focus on the class P for much of our work on 

complexity theory.
• Q: Why is P a good language class to study?
• It’s model-independent (for reasonable models).
• It’s scalable:

– Constant-factor dependence on input size.
– E.g., an input that’s twice as long requires only c times 

as much time, for some constant c (depends on degree 
of the polynomial).

• E.g., consider time bound n3.
• Input of length n takes time n3.
• Input of length 2n takes time (2n)3 = 8 n3, c = 8.

– Works for all polynomials, any degree.



P, Polynomial Time
• Q:  Why is P a good language class to study?
• It’s model-independent (for reasonable models).
• It’s scalable.
• It has nice composition properties:

– Composing two polynomials yields another polynomial.
– This property will be useful later, when we define  

polynomial-time reducibilities.
– Preview: A ≤p B means that there exists a polynomial-

time computable function f such that x ∈ A if and only if 
f(x) ∈ B.

– Desirable theorem:  A ≤p B and B ∈ P imply A ∈ P.
– Proof:  

• Suppose B is decidable in time O(nk).
• Suppose the reducibility function f is computable in time O(nl).



P, Polynomial Time
• P has nice composition properties:

– A ≤p B means that there’s a polynomial-time computable 
function f such that x ∈ A if and only if f(x) ∈ B.

– Desirable theorem:  A ≤p B and B ∈ P imply A ∈ P.
– Proof:  

• Suppose B is decidable in time O(nk), and f is computable in 
time O(nl).

• How much time does it take to decide membership in A by 
reduction to B?

• Given x of length n, time to compute f(x) is O(nl).
• Moreover, |f(x)| = O(nl), since there’s not enough time to 

generate a bigger result.
• Now run B’s decision procedure on f(x).
• Takes time O(|f(x)|k) = O( (nl)k ) = O( nlk ).
• Another polynomial, so A is decidable in poly time, so A ∈ P



P, Polynomial Time
• Q:  Why is P a good language class to study?

– It’s model-independent (for reasonable models).
– It’s scalable.
– It has nice composition properties.

• Q:  What are some limitations?
– Includes too much:

• Allows polynomials with arbitrarily large exponents and 
coefficients.

• Time 10,000,000 n10,000,000 isn’t really feasible.
• In practice, running times are usually low degree polynomials, 

up to about O(n4).
• On the other hand, proving a non-polynomial lower bound is 

likely to be meaningful.



P, Polynomial Time
• Q:  Why is P a good language class to study?

– It’s model-independent (for reasonable models).
– It’s scalable.
– It has nice composition properties.

• Q:  What are some limitations?
– Includes too much.
– Excludes some things:

• Considers worst case time complexity only.
– Some algorithms may work well enough in most cases, or in 

common cases, even though the worst case is exponential.
• Random choices, with membership being decided with high 

probability rather than with certainty.
• Quantum computing.



P, Polynomial Time
• Example: A language in P.

– PATH = { < G, s, t > | G = (V, E) is a digraph that has a 
directed path from s to t }

– Represent G by adjacency matrix ( |V| rows and |V| 
columns, 1 indicates an edge, 0 indicates no edge).

– Brute-force algorithm: Try all paths of length ≤ |V|.
• Exponential running time in input size, not polynomial.

– Better algorithm: BFS of G starting from s.
• Mark new nodes accessible from already-marked nodes, until 

no new nodes are found.
• Then see if t is marked.
• Complexity analysis:  

– At most |V| phases are executed.  
– Each phase takes polynomial time to explore marked nodes 

and their outgoing edges.



A Language Not in P



A Language Not in P
• Q: Is every language in P?
• No, because P ⊆ decidable languages, and not every 

language is decidable.
• Q: Is every decidable language in P?
• No again, but it takes some work to show this.
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Proof:
– Fix computable function t.
– Define language Acc(t) 

= { <M> | M is a basic TM and M accepts <M> in ≤ t(|<M>|) steps }.
– Claim 1:  Acc(t) is decidable. 
– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) steps.



A Language Not in P
• Theorem: For any computable function t, there is 

a language that is decidable, but cannot be 
decided by any basic Turing machine in time t(n).

• Proof:
– Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }.
– Claim 1:  Acc(t) is decidable. 

• Given <M>, simulate M on <M> for t(|<M>|) simulated steps and 
see if it accepts.

– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Use a diagonalization proof, like that for AccTM.
• Assume Acc(t) is decided in time ≤ t(n) by some basic TM.

– Here, n = |<M>| for input <M>.



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Then Acc(t)c is decided in time ≤ t(n), by another basic TM.

• Interchange qacc and qrej states.
– Let M0 be a basic TM that decides Acc(t)c in time ≤ t(n).

• That means t(n) steps of M0, not t(n) simulated steps.
– Thus, for every basic Turing machine M:

• If <M> ∈Acc(t)c, then M0 accepts <M> in time ≤ t(|<M>|).
• If <M> ∈Acc(t), then M0 rejects <M> in time ≤ t(|<M>|).



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– Thus, for every basic Turing machine M:

• If <M> ∈Acc(t)c, then M0 accepts <M> in time ≤ t(|<M>|).
• If <M> ∈Acc(t), then M0 rejects <M> in time ≤ t(|<M>|).

– Thus, for every basic Turing machine M:
• <M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– For every basic Turing machine M:

<M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).
– However, by definition of Acc(t), for every basic TM M:

<M> ∈Acc(t)c iff M does not accept <M> in time ≤ t(|<M>|).



A Language Not in P
• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 

steps.
• Proof:

– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– For every basic Turing machine M:

<M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).
<M> ∈Acc(t)c iff M does not accept <M> in time ≤ t(|<M>|).

– Now plug in M0 for M in both statements:
<M0> ∈Acc(t)c iff M0 accepts <M0> in time ≤ t(|<M0>|).
<M0> ∈Acc(t)c iff M0 does not accept <M0> in time ≤ t(|<M0>|).

– Contradiction!



A Language Not in P
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }.
• We have proved:
• Theorem:  For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Proof:
– Claim 1:  Acc(t) is decidable. 
– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) steps.

• Thus, for every computable function t(n), no matter how 
large (exponential, double-exponential,…), there are 
decidable languages not decidable in time t(n).

• In particular, there are decidable languages not in P.



Hierarchy Theorems



Hierarchy Theorems
• Simplified summary, from Sipser Section 9.1.
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }
• We have just proved that, for any computable function t, 

the language Acc(t) is decidable, but cannot be decided by 
any basic TM in time t(n).

• Q:  How much time does it take to compute Acc(t)?
• More than t(n), but how much more?
• Technical assumption:  t is “time-constructible”, meaning it 

can be computed in an amount of time that is not much 
bigger than t itself.
– Examples:  Typical functions, like polynomials, 

exponentials, double-exponentials,…



Hierarchy Theorems
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }
• Q: How much time does it take to compute Acc(t)?
• Theorem (informal statement): If t is any time-constructible 

function, then Acc(t) can be decided by a basic TM in time 
not much bigger than t(n).
– E.g., approximately t2(n).
– Sipser (Theorem 9.10) gives a tighter bound.

• Q: Why exactly does it take much more than t(n) time to 
run an arbitrary machine M on <M> for t(|<M>|) simulated 
steps?

• We must simulate an arbitrary machine M using a fixed 
“universal” TM, with a fixed state set, fixed alphabet, etc.



Hierarchy Theorems
• Theorem (informal): If t is any time-constructible 

function, then Acc(t) can be decided by a basic TM 
in time not much bigger than t(n). 
– E.g., approximately t2(n).

• Implies that there is:
– A language decidable in time n2 but not time n.
– A language decidable in time n6 but not time n3.
– A language decidable in time 4n but not time 2n.

• Extend this reasoning to show:
– TIME(n) ≠ TIME(n2) ≠ TIME(n4) …

≠ TIME(2n) ≠ TIME(4n) …
• A hierarchy of distinct language classes.



Next time…

• The Midterm!  



MIT OpenCourseWare
http://ocw.mit.edu 

6.045J / 18.400J Automata, Computability, and Complexity 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045:  Automata, Computability, and Complexity�Or, GITCS
	Today:  Complexity Theory
	Complexity Theory
	Complexity Theory
	Examples of time complexity analysis
	Examples of time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Time complexity analysis
	Asymptotic function notation:�O, o, , �
	Asymptotic function notation
	More big-O examples
	Other notation
	Other notation
	Plugging asymptotics into formulas
	Other notation
	Back to the TM running times…
	Time Complexity Classes
	Time Complexity Classes
	Time Complexity Classes
	Time Complexity Classes
	Time Complexity Classes
	Time Complexity Classes
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	P, Polynomial Time
	A Language Not in P
	A Language Not in P
	A Language Not in P
	A Language Not in P
	A Language Not in P
	A Language Not in P
	A Language Not in P
	A Language Not in P
	Hierarchy Theorems
	Hierarchy Theorems
	Hierarchy Theorems
	Hierarchy Theorems
	Next time…



