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Today:  Complexity Theory
• First part of the course:  Basic models of computation

– Circuits, decision trees
– DFAs, NFAs:

• Restricted notion of computation:  no auxiliary memory, just one
pass over input.

• Yields restricted class of languages:  regular languages.
• Second part:  Computability

– Very general notion of computation.
– Machine models like Turing machines, or programs in general 

(idealized) programming languages.
– Unlimited storage, multiple passes over input, compute arbitrarily 

long, possibly never halt.
– Yields large language classes:  Turing-recognizable = enumerable, 

and Turing-decidable.
• Third part:  Complexity theory



Complexity Theory
• First part of the course:  Basic models of computation
• Second part:  Computability
• Third part:  Complexity theory

– A middle ground.
– Restrict the general TM model by limiting its use of resources:

• Computing time (number of steps).
• Space = storage (number of tape squares used).

– Leads to interesting subclasses of the Turing-decidable languages, 
based on specific bounds on amounts of resources used.

– Compare:
• Computability theory answers the question “What languages 

are computable (at all)?”
• Complexity theory answers “What languages are computable 

with particular restrictions on amount of resources?”



Complexity Theory
• Topics

– Examples of time complexity analysis (informal).
– Asymptotic function notation:  O, o, Ω, Θ
– Time complexity classes
– P, polynomial time
– Languages not in P
– Hierarchy theorems 

• Reading:
– Sipser, Sections 7.1, 7.2, and a bit from 9.1.

• Next:
– Midterm, then Section 7.3 (after the break).



Examples of time complexity 
analysis



Examples of time complexity analysis
• Consider a basic 1-tape Turing machine M that decides 

membership in the language L = {0k1k | k ≥ 0}:
– M first checks that its input is in 0*1*, using one left-to-right pass.
– Returns to the beginning (left).
– Then does repeated passes, each time crossing off one 0 and one 

1, until it runs out of at least one of them.
– If it runs out of both on the same pass, accepts, else rejects.

• Q: How much time until M halts?
• Depends on the particular input.
• Example:  0111…1110 (length n)

– Approximately n steps to reject---not in 0*1*, 
• Example:  00…011…1  (n/2 0s and n/2 1s)

– Approximately (at most) 2n + (n/2) 2n = 2n + n2 steps to accept.

Initial 
check

Number of
passes

Upper bound on steps 
For one pass



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• Time until M halts depends on the particular input.
• 0111…1110 (length n)

– Approximately n steps to reject---not in 0*1*, 
• 00…011…1  (n/2 0s and n/2 1s)

– Approximately (at most) 2n + n2 steps to accept.
• It’s too complicated to determine exactly how many steps 

are required for every input.
• So instead, we:

– Get a close upper bound, not an exact step count.
– Express the bound as a function of the input length n, thus grouping 

together all inputs of the same length and considering the max.
– Often ignore constant factors and low-order terms.

• So, we describe the time complexity of M as O(n2).
– At most some constant times n2.



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• Time complexity of machine M = O(n2).
• Q:  Can we do better with a multitape machine?
• Yes, with 2 tapes:

– After checking 0*1*, the machine copies the 0s to the 
second tape.

– Then moves 2 heads together, one scanning the 0s on 
the second tape and one scanning the 1s on the first 
tape.

– Check that all the symbols match.
– Time O(n), proportional to n.



Time complexity analysis
• L(M) = {0k1k | k ≥ 0}.
• 1-tape machine:  O(n2), 2-tape machine:  O(n).
• Q:  Can we beat O(n2) with a 1-tape machine?
• Yes, can get O(n log n):

– First check 0*1*, as before, O(n) steps.
– Then perform marking phases, as long as some unmarked 0 and 

some unmarked 1 remain.
– In each marking phase:

• Scan to see whether # of unmarked 0s  ≡ # of unmarked 1s, mod 2.
– That is, see whether they have the same parity.

• If not, then reject, else continue.
• Scan again, marking every other 0 starting with the first and every 

other 1 starting with the first.
– After all phases are complete:

• If just 0s or just 1s remain, then reject
• If no unmarked symbols remain, then accept.



Time complexity analysis
• O(n log n) algorithm:

– Check 0*1*.
– Perform marking phases, as long as some unmarked 0 and some 

unmarked 1 remain.
– In each marking phase:

• Scan to see if # of unmarked 0s  ≡ # of unmarked 1s, mod 2; if not, 
then reject, else continue.

• Scan again, marking every other 0 starting with the first and every 
other 1 starting with the first.

– If just 0s or just 1s remain, then reject, else accept.
• Example: 00…011…1 (25 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 12 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 6, 6.
– Phase 3:  Same parity (even), marking leaves 3, 3.
– Phase 4:  Same parity (odd), marking leaves 1,1.
– Phase 5:  Same parity (odd), marking leaves 0,0
– Accept



Time complexity analysis
• Example: 00…011…1 (25 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 12 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 6, 6.
– Phase 3:  Same parity (even), marking leaves 3, 3.
– Phase 4:  Same parity (odd), marking leaves 1,1.
– Phase 5:  Same parity (odd), marking leaves 0,0
– Accept

• Odd parity leads to remainder 1 on division by 2, even 
parity leads to remainder 0.

• Can read off odd-even parity designations to get binary 
representations of the numbers, starting with final phase 
for high-order bit:
– 5:  odd; 4:  odd; 3: even; 2: even; 1: odd
– Yields 1 1 0 0 1, binary representation of 25

• If the algorithm accepts, it means the 2 numbers have the 
same binary representation, so they are equal.



Time complexity analysis
• Example: 00…011…1 (17 0s and 25 1s)

– Correct form, 0*1*.
– Phase 1:  Same parity (odd), marking leaves 8 0s and 12 1s.
– Phase 2:  Same parity (even), marking leaves 4, 6.
– Phase 3:  Same parity (even), marking leaves 2, 3.
– Phase 4:  Different parity, reject
– Don’t complete this, so don’t generate the complete binary 

representation of either number.



Time complexity analysis
• Algorithm

– Check 0*1*.
– Perform marking phases, as long as some unmarked 0 and some 

unmarked 1 remain.
– In each marking phase:

• Scan to see if # of unmarked 0s  ≡ # of unmarked 1s, mod 2; if 
not, then reject, else continue.

• Scan again, marking every other 0 starting with the first and 
every other 1 starting with the first.

– If just 0s or just 1s remain, then reject, else accept.
• Complexity analysis:

– Number of phases is O(log2 n), since we (approximately) halve the 
number of unmarked 0s and unmarked 1s at each phase.

– Time for each phase:  O(n).
– Total:  O(n log n).

• This analysis is informal; now define O, etc., more carefully 
and then revisit the example.



Asymptotic function notation:
O, o, Ω, Θ



Asymptotic function notation
• Definition:  O (big-O)

– Let f, g be two functions: N → R≥0.
– We write f(n) = O(g(n)), and say “f(n) is big-O of g(n)” if 

the following holds:
• There is a positive real c, and a positive integer n0, 

such that f(n) ≤ c g(n) for every n ≥ n0.
• That is, f(n) is bounded from above by a constant 

times g(n), for all sufficiently large n.
• Often used for complexity upper bounds.
• Example: n + 2 = O(n); can use c = 2, n0 = 2.
• Example: 3n2 + n = O(n2); can use c = 4, n0 = 1.
• Example: Any degree-k polynomial with 

nonnegative coefficients, p(n) = aknk + ak-1nk-1 + 
…+ a1n + a0 = O(nk)
– Thus, 3n4 + 6n2 + 17 = O(n4).



More big-O examples
• Definition:  

– Let f, g: N → R≥0

– f(n) = O(g(n)) means that there is a positive real c, and a 
positive integer n0, such that f(n) ≤ c g(n) for every n ≥
n0.

• Example: 3n4 = O(n7), though this is not the 
tightest possible statement.

• Example: 3n7 ≠ O(n4).
• Example:  log2(n) = O(loge(n)); loga(n) = O(logb(n)) 

for any a and b
– Because logs to different bases differ by a constant 

factor.
• Example: 23+n = O(2n), because 23+n = 8 × 2n

• Example: 3n ≠ O(2n)



Other notation
• Definition:  Ω (big-Omega)

– Let f, g be two functions: N → R≥0

– We write f(n) = Ω(g(n)), and say “f(n) is big-Omega of 
g(n)” if the following holds:

• There is a positive real c, and a positive integer n0, such that 
f(n) ≥ c g(n) for every n ≥ n0.

• That is, f(n) is bounded from below by a positive 
constant times g(n), for all sufficiently large n.

• Used for complexity lower bounds.
• Example: 3n2 + 4n log(n) = Ω(n2)
• Example: 3n7 = Ω(n4).
• Example:  loge(n) = Ω(log2(n))
• Example: 3n = Ω(2n)



Other notation
• Definition:  Θ (Theta)

– Let f, g be two functions: N → R≥0

– We write f(n) = Θ(g(n)), and say “f(n) is Theta of g(n)” if 
f(n) = O(g(n)) and f(n) = Ω(g(n)).

– Equivalently, there exist positive reals c1, c2, and 
positive integer n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for 
every n ≥ n0.

• Example: 3n2 + 4n log(n) = Θ(n2)
• Example: 3n4 = Θ(n4).
• Example: 3n7 ≠ Θ(n4).
• Example:  loge(n) = Θ(log2(n))
• Example: 3n ≠ Θ(2n)



Plugging asymptotics into formulas
• Sometimes we write things like  2Θ(log2n)

• What does this mean?
• Means the exponent is some function f(n) 

that is Θ(log n), that is, c1log(n) ≤ f(n) ≤
c2log(n) for every n ≥ n0.

• So 2c1log(n) ≤ 2Θ(log2n) ≤ 2c2log(n)

• In other words, nc1 ≤ 2Θ(log2n) ≤ nc2

• Same as nΘ(1) .



Other notation
• Definition:  o (Little-o)

– Let f, g be two functions: N → R≥0

– We write f(n) = o(g(n)), and say “f(n) is little-o of g(n)” if 
for every positive real c, there is some positive integer 
n0, such that f(n) < c g(n) for every n ≥ n0.

– In other words, no matter what constant c we choose, 
for sufficiently large n, f(n) is less than g(n).

– In other words, f(n) grows at a slower rate than any 
constant times g(n).

– In other words, limn→∞ f(n)/g(n) = 0.
• Example: 3n4 = o(n7)
• Example: √n = o(n)
• Example: n log n = o(n2)
• Example: 2n = o(3n)



Back to the TM running times…
• Running times (worst case over all inputs of the 

same length n) of the 3 TMs described earlier:
– Simple 1-tape algorithm:  Θ(n2)
– 2-tape algorithm:  Θ(n)
– More clever 1-tape algorithm: Θ(n log n)

• More precisely, consider any Turing machine M 
that decides a language.

• Define the running time function tM(n) to be:
– maxw∈Σn t′M(w), where 
– t′M(w) is the exact running time (number of steps) of M 

on input w.
• Then for these three machines, tM(n) is Θ(n2), 
Θ(n), and Θ(n log n), respectively.



Time Complexity Classes



Time Complexity Classes
• Classify decidable languages according to upper bounds 

on the running time for TMs that decide them.
• Definition: Let t: N → R≥0 be a (total) function.  Then 

TIME(t(n)) is the set of languages:
{ L |  L is decided by some O(t(n))-time Turing machine }

• Call this a “time-bounded complexity class”.
• Notes:

– Notice the O---allows some slack.
– To be careful, we need to specify which kind of TM model we are 

talking about; assume basic 1-tape.
• Complexity Theory studies:

– Which languages are in which complexity classes.
• E.g., is the language PRIMES in TIME(n5)?

– How complexity classes are related to each other.
• E.g., is TIME(n5) = TIME(n6), or are there languages that can be 

decided in time O(n6) but not in time O(n5)?



Time Complexity Classes
• A problem:  Running times are model-dependent.
• E.g., L = {0k1k | k ≥ 0}:

– On 1-tape TM, can decide in time O( n log n).
– On 2-tape TM, can decide in time O(n).

• To be definite, we’ll define the complexity classes in terms 
of 1-tape TMs (as Sipser does); others use multi-tape, or 
other models like Random-Access Machines (RAMs).

• Q: Is this difference important?
• Only up to a point:

– If L ∈ TIME(f(n)) based on any “standard” machine model, then also 
L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some polynomial p, 
based on any other “standard” machine model.

– Running times for L in any two standard models are polynomial-
related.

• Example: Single-tape vs. multi-tape Turing machines



Time Complexity Classes
• If L ∈ TIME(f(n)) based on any “standard” machine model, 

then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some 
polynomial p, based on any other “standard” machine 
model.

• Example: 1-tape vs. multi-tape Turing machines
– 1-tape → multi-tape with no increase in complexity.
– Multi-tape → 1-tape:  If t(n) ≥ n then every t(n)-time multi-tape TM 

has an equivalent O(t2(n))-time 1-tape TM.
– Proof idea:  

• 1-tape TM simulates multi-tape TM.
• Simulates each step of multi-tape TM using 2 scans over non-

blank portion of tapes, visiting all heads, making all changes.
– Q: What is the time complexity of the simulating 1-tape TM?  That 

is, how many steps does the 1-tape TM use to simulate the t(n) 
steps of the multi-tape machine?



Time Complexity Classes
• Example: 1-tape vs. multi-tape Turing machines

– Multi-tape → 1-tape:  If t(n) ≥ n then every t(n)-time multi-tape TM has 
an equivalent O(t2(n))-time 1-tape TM.

– 1-tape TM simulates multi-tape TM; simulates each step using 2 scans 
over non-blank portion of tapes, visiting all heads, making all changes.

– Q:  What is the time complexity of the 1-tape TM?  
– Q:  How big can the non-blank portion of the multi-tape TM’s tapes 

become?
• Initially n, for the input.
• In t(n) steps, no bigger than t(n), because that’s how far the heads 

can travel (starts at left).
– So the number of steps by the 1-tape TM is at most:

t(n)     × c t(n),     hence O(t2(n)).

Number of steps of 
multi-tape machine

Steps taken by the scans,
to emulate one step of the
multi-tape machine.



Time Complexity Classes
• If L ∈ TIME(f(n)) based on any “standard” machine model, 

then also L ∈ TIME(g(n)), where g(n) = O(p(f(n))) for some 
polynomial p, based on any other “standard” machine 
model.

• Slightly-idealized versions of real computers, programs in 
standard languages, other “reasonable” machine models, 
can be emulated by basic TMs with only polynomial 
increase in running time.

• Important exception:  Nondeterministic Turing machines (or 
other nondeterministic computing models)
– For nondeterministic TMs, running time is usually measured by max 

number of steps on any branch.
– A bound of t(n) on the maximum number of steps on any branch 

translates into 2O(t(n)) steps for basic deterministic TMs.



P, Polynomial Time



P, Polynomial Time
• A formal way to define fast computability.
• Because of simulation results, polynomial differences are 

considered to be unimportant for (deterministic) TMs.
• So our definition of fast computability ignores polynomial 

differences.
• Definition: The class P of languages that are decidable in 

polynomial time is defined by:
P = ∪p a poly TIME(p(n)) = ∪k ≥ 0 TIME(nk) 

• Notes:
– These time-bounded language classes are defined with respect to 

basic (1-tape, 1-head) Turing machines.
– Simulation results imply that we could have used any “reasonable”

deterministic computing model and get the same language class.
– Robust notion.



P, Polynomial Time
• Definition:  The class P of languages that are decidable in 

polynomial time is defined by:
P = ∪p a poly TIME(p(n)) = ∪k ≥ 0 TIME(nk) 

• P plays a role in complexity theory loosely analogous to 
that of decidable languages in computability.

• Recall Church-Turing thesis:
– If L is decidable using some reasonable model of computation, then 

it is decidable using any reasonable model of computation.
• Modified Church-Turing thesis:

– If L is decidable in polynomial time using some reasonable 
deterministic model of computation, then it is decidable in 
polynomial time using any reasonable deterministic model of 
computation.

• This is not a theorem---rather, a philosophical statement.
• Can think of this as defining what a reasonable model is.
• We’ll focus on the class P for much of our work on 

complexity theory.



P, Polynomial Time
• We’ll focus on the class P for much of our work on 

complexity theory.
• Q: Why is P a good language class to study?
• It’s model-independent (for reasonable models).
• It’s scalable:

– Constant-factor dependence on input size.
– E.g., an input that’s twice as long requires only c times 

as much time, for some constant c (depends on degree 
of the polynomial).

• E.g., consider time bound n3.
• Input of length n takes time n3.
• Input of length 2n takes time (2n)3 = 8 n3, c = 8.

– Works for all polynomials, any degree.



P, Polynomial Time
• Q:  Why is P a good language class to study?
• It’s model-independent (for reasonable models).
• It’s scalable.
• It has nice composition properties:

– Composing two polynomials yields another polynomial.
– This property will be useful later, when we define  

polynomial-time reducibilities.
– Preview: A ≤p B means that there exists a polynomial-

time computable function f such that x ∈ A if and only if 
f(x) ∈ B.

– Desirable theorem:  A ≤p B and B ∈ P imply A ∈ P.
– Proof:  

• Suppose B is decidable in time O(nk).
• Suppose the reducibility function f is computable in time O(nl).



P, Polynomial Time
• P has nice composition properties:

– A ≤p B means that there’s a polynomial-time computable 
function f such that x ∈ A if and only if f(x) ∈ B.

– Desirable theorem:  A ≤p B and B ∈ P imply A ∈ P.
– Proof:  

• Suppose B is decidable in time O(nk), and f is computable in 
time O(nl).

• How much time does it take to decide membership in A by 
reduction to B?

• Given x of length n, time to compute f(x) is O(nl).
• Moreover, |f(x)| = O(nl), since there’s not enough time to 

generate a bigger result.
• Now run B’s decision procedure on f(x).
• Takes time O(|f(x)|k) = O( (nl)k ) = O( nlk ).
• Another polynomial, so A is decidable in poly time, so A ∈ P



P, Polynomial Time
• Q:  Why is P a good language class to study?

– It’s model-independent (for reasonable models).
– It’s scalable.
– It has nice composition properties.

• Q:  What are some limitations?
– Includes too much:

• Allows polynomials with arbitrarily large exponents and 
coefficients.

• Time 10,000,000 n10,000,000 isn’t really feasible.
• In practice, running times are usually low degree polynomials, 

up to about O(n4).
• On the other hand, proving a non-polynomial lower bound is 

likely to be meaningful.



P, Polynomial Time
• Q:  Why is P a good language class to study?

– It’s model-independent (for reasonable models).
– It’s scalable.
– It has nice composition properties.

• Q:  What are some limitations?
– Includes too much.
– Excludes some things:

• Considers worst case time complexity only.
– Some algorithms may work well enough in most cases, or in 

common cases, even though the worst case is exponential.
• Random choices, with membership being decided with high 

probability rather than with certainty.
• Quantum computing.



P, Polynomial Time
• Example: A language in P.

– PATH = { < G, s, t > | G = (V, E) is a digraph that has a 
directed path from s to t }

– Represent G by adjacency matrix ( |V| rows and |V| 
columns, 1 indicates an edge, 0 indicates no edge).

– Brute-force algorithm: Try all paths of length ≤ |V|.
• Exponential running time in input size, not polynomial.

– Better algorithm: BFS of G starting from s.
• Mark new nodes accessible from already-marked nodes, until 

no new nodes are found.
• Then see if t is marked.
• Complexity analysis:  

– At most |V| phases are executed.  
– Each phase takes polynomial time to explore marked nodes 

and their outgoing edges.



A Language Not in P



A Language Not in P
• Q: Is every language in P?
• No, because P ⊆ decidable languages, and not every 

language is decidable.
• Q: Is every decidable language in P?
• No again, but it takes some work to show this.
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Proof:
– Fix computable function t.
– Define language Acc(t) 

= { <M> | M is a basic TM and M accepts <M> in ≤ t(|<M>|) steps }.
– Claim 1:  Acc(t) is decidable. 
– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) steps.



A Language Not in P
• Theorem: For any computable function t, there is 

a language that is decidable, but cannot be 
decided by any basic Turing machine in time t(n).

• Proof:
– Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }.
– Claim 1:  Acc(t) is decidable. 

• Given <M>, simulate M on <M> for t(|<M>|) simulated steps and 
see if it accepts.

– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Use a diagonalization proof, like that for AccTM.
• Assume Acc(t) is decided in time ≤ t(n) by some basic TM.

– Here, n = |<M>| for input <M>.



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Then Acc(t)c is decided in time ≤ t(n), by another basic TM.

• Interchange qacc and qrej states.
– Let M0 be a basic TM that decides Acc(t)c in time ≤ t(n).

• That means t(n) steps of M0, not t(n) simulated steps.
– Thus, for every basic Turing machine M:

• If <M> ∈Acc(t)c, then M0 accepts <M> in time ≤ t(|<M>|).
• If <M> ∈Acc(t), then M0 rejects <M> in time ≤ t(|<M>|).



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– Thus, for every basic Turing machine M:

• If <M> ∈Acc(t)c, then M0 accepts <M> in time ≤ t(|<M>|).
• If <M> ∈Acc(t), then M0 rejects <M> in time ≤ t(|<M>|).

– Thus, for every basic Turing machine M:
• <M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).



A Language Not in P
• Theorem: For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤
t(|<M>|) steps }.

• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 
steps.

• Proof:
– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– For every basic Turing machine M:

<M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).
– However, by definition of Acc(t), for every basic TM M:

<M> ∈Acc(t)c iff M does not accept <M> in time ≤ t(|<M>|).



A Language Not in P
• Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) 

steps.
• Proof:

– Assume Acc(t) is decided in time ≤ t(n) by some basic TM.
– Acc(t)c is decided in time ≤ t(n), by basic TM M0.
– For every basic Turing machine M:

<M> ∈Acc(t)c iff M0 accepts <M> in time ≤ t(|<M>|).
<M> ∈Acc(t)c iff M does not accept <M> in time ≤ t(|<M>|).

– Now plug in M0 for M in both statements:
<M0> ∈Acc(t)c iff M0 accepts <M0> in time ≤ t(|<M0>|).
<M0> ∈Acc(t)c iff M0 does not accept <M0> in time ≤ t(|<M0>|).

– Contradiction!



A Language Not in P
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }.
• We have proved:
• Theorem:  For any computable function t, there is a 

language that is decidable, but cannot be decided by any 
basic Turing machine in time t(n).

• Proof:
– Claim 1:  Acc(t) is decidable. 
– Claim 2:  Acc(t) is not decided by any basic TM in ≤ t(n) steps.

• Thus, for every computable function t(n), no matter how 
large (exponential, double-exponential,…), there are 
decidable languages not decidable in time t(n).

• In particular, there are decidable languages not in P.



Hierarchy Theorems



Hierarchy Theorems
• Simplified summary, from Sipser Section 9.1.
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }
• We have just proved that, for any computable function t, 

the language Acc(t) is decidable, but cannot be decided by 
any basic TM in time t(n).

• Q:  How much time does it take to compute Acc(t)?
• More than t(n), but how much more?
• Technical assumption:  t is “time-constructible”, meaning it 

can be computed in an amount of time that is not much 
bigger than t itself.
– Examples:  Typical functions, like polynomials, 

exponentials, double-exponentials,…



Hierarchy Theorems
• Acc(t) = { <M> | M is a basic TM that accepts <M> in ≤

t(|<M>|) steps }
• Q: How much time does it take to compute Acc(t)?
• Theorem (informal statement): If t is any time-constructible 

function, then Acc(t) can be decided by a basic TM in time 
not much bigger than t(n).
– E.g., approximately t2(n).
– Sipser (Theorem 9.10) gives a tighter bound.

• Q: Why exactly does it take much more than t(n) time to 
run an arbitrary machine M on <M> for t(|<M>|) simulated 
steps?

• We must simulate an arbitrary machine M using a fixed 
“universal” TM, with a fixed state set, fixed alphabet, etc.



Hierarchy Theorems
• Theorem (informal): If t is any time-constructible 

function, then Acc(t) can be decided by a basic TM 
in time not much bigger than t(n). 
– E.g., approximately t2(n).

• Implies that there is:
– A language decidable in time n2 but not time n.
– A language decidable in time n6 but not time n3.
– A language decidable in time 4n but not time 2n.

• Extend this reasoning to show:
– TIME(n) ≠ TIME(n2) ≠ TIME(n4) …

≠ TIME(2n) ≠ TIME(4n) …
• A hierarchy of distinct language classes.



Next time…

• The Midterm!  
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