
6.045: Automata, Computability, and
Complexity

Or, Great Ideas in Theoretical
Computer Science

Spring, 2010

Class 10
Nancy Lynch

Today

• Final topic in computability theory: Self-Reference
and the Recursion Theorem

• Consider adding to TMs (or programs) a new,
powerful capability to “know” and use their own
descriptions.

• The Recursion Theorem says that this apparent
extra power does not add anything to the basic
computability model: these self-referencing
machines can be transformed into ordinary non-
self-referencing TMs.

Today
• Self-Reference and the Recursion Theorem
• Topics:

– Self-referencing machines and programs
– Statement of the Recursion Theorem
– Applications of the Recursion Theorem
– Proof of the Recursion Theorem: Special case
– Proof of the Recursion Theorem: General case

• Reading:
– Sipser, Section 6.1

Self-referencing machines and
programs

Self-referencing machines/programs
• Consider the following program P1.
• P1:

– Obtain < P1 >
– Output < P1 >

• P1 simply outputs its own representation, as a
string.

• Simplest example of a machine/program that uses
its own description.

Self-referencing machines/programs
• A more interesting example:
• P2: On input w:

– If w = ε then output 0
– Else

• Obtain < P2 >
• Run P2 on tail(w)
• If P2 on tail(w) outputs a number n then output n+1.

• What does P2 compute?
• It computes |w|, the length of its input.
• Uses the recursive style common in LISP, Scheme, other

recursive programming languages.
• We assume that, once we have the representation of a

machine, we can simulate it on a given input.
• E.g., if P2 gets < P2 >, it can simulate P2 on any input.

Self-referencing machines/programs
• One more example:
• P3: On input w:

– Obtain < P3 >
– Run P3 on w
– If P3 on w outputs a number n then output n+1.

• A valid self-referencing program.
• What does P3 compute?
• Seems contradictory: if P3 on w outputs n then P3

on w outputs n+1.
• But according to the usual semantics of recursive

calls, it never halts, so there’s no contradiction.
• P3 computes a partial function that isn’t defined

anywhere.

Statement of the Recursion
Theorem

The Recursion Theorem
• Used to justify self-referential programs like P1, P2,

P3, by asserting that they have corresponding
(equivalent) basic TMs.

• Recursion Theorem (Sipser Theorem 6.3):
Let T be a TM that computes a (possibly partial) 2-
argument function t: Σ* × Σ* → Σ*.
Then there is another TM R that computes the
function r: Σ* → Σ*, where for any w, r(w) = t(<R>,
w).

The Recursion Theorem
• Recursion Theorem: Let T be a TM that computes a

(possibly partial) 2-argument function t: Σ* × Σ* → Σ*. Then
there is another TM R that computes the function r: Σ* →
Σ*, where for any w, r(w) = t(<R>, w).

• Thus, T is a TM that takes 2 inputs.
• Think of the first as the description of

some arbitrary 1-input TM M.

• Then R behaves like T, but with the
first input set to <R>, the description
of R itself.

• Thus, R uses its own representation.

T

<M> w

t(<M>, w)

R

t(<R>, w)

w

The Recursion Theorem
• Recursion Theorem: Let T be a TM that computes a

(possibly partial) 2-argument function t: Σ* × Σ* → Σ*. Then
there is another TM R that computes the function r: Σ* →
Σ*, where for any w, r(w) = t(<R>, w).

• Example: P2, revisited
– Computes length of input.
– What are T and R?
– Here is a version of P2 with an extra

input <M>:
– T2: On inputs <M> and w:

• If w = ε then output 0
• Else run M on tail(w); if it outputs n then

output n+1.

T

<M> w

t(<M>, w)

R

t(<R>, w)

w

The Recursion Theorem
• Example: P2, revisited

– T2: On inputs <M> and w:
• If w = ε then output 0
• Else run M on tail(w); if it outputs n then output

n+1.

– T2 produces different results, depending
on what M does.

– E.g., if M always loops:
• T2 outputs 0 on input w = ε and loops on every

other input.

– E.g., if M always halts and outputs 1:
• T2 outputs 0 on input w = ε and outputs 2 on

every other input.

T

<M> w

t(<M>, w)

R

t(<R>, w)

w

The Recursion Theorem
• Example: P2, revisited

– T2: On inputs <M> and w:
• If w = ε then output 0
• Else run M on tail(w); if it outputs n then output

n+1.

– Recursion Theorem says there is a TM R
computing t(<R>, w)---just like T2 but with
input <M> set to <R> for the same R.

– This R is just P2 as defined earlier.

T

<M> w

t(<M>, w)

R

t(<R>, w)

w

The Recursion Theorem
• Recursion Theorem (Sipser

Theorem 6.3):
Let T be a TM that computes a
(possibly partial) 2-argument
function t: Σ* × Σ* → Σ*.

Then there is another TM R that
computes the function r: Σ* → Σ*,
where for any w, r(w) = t(<R>, w).

T

<M> w

t(<M>, w)

R

t(<R>, w)

w

Applications of the Recursion
Theorem

Applications of Recursion Theorem

• The Recursion Theorem can be used to show various
negative results, e.g., undecidability results.

• Application 1: AccTM is undecidable
– We already know this, but the Recursion Theorem provides a new

proof.
– Suppose for contradiction that D is a TM that decides AccTM.
– Construct another machine R using self-reference (justified by the

Recursion Theorem):
• R: On input w:

– Obtain < R > (using Recursion Theorem)
– Run D on input <R, w> (we can construct <R, w> from <R> and w)
– Do the opposite of what D does:

• If D accepts <R, w> then reject.
• If D rejects <R, w> then accept.

Application 1: AccTM is undecidable

• Suppose for contradiction that D decides AccTM.
• R: On input w:

– Obtain < R >
– Run D on input <R, w>
– Do the opposite of what D does:

• If D accepts <R, w> then reject.
• If D rejects <R, w> then accept.

• RT says that TM R exists, assuming decider D exists.
• Formally, to apply RT, use the 2-input machine T:
• T: On inputs <M> and w:

– Run D on input <M, w>
– Do the opposite of what D does:

• If D accepts <M, w> then reject.
• If D rejects <M, w> then accept.

Application 1: AccTM is undecidable

• Suppose for contradiction that D decides AccTM.
• R: On input w:

– Obtain < R >
– Run D on input <R, w>
– Do the opposite of what D does:

• If D accepts <R, w> then reject.
• If D rejects <R, w> then accept.

• Now get a contradiction:
– If R accepts w, then

• D accepts <R, w> since D is a decider for AccTM, so
• R rejects w by definition of R.

– If R does not accept w, then
• D rejects <R, w> since D is a decider for AccTM, so
• R accepts w by definition of R.

• Contradiction. So D can’t exist, so AccTM is undecidable.

Applications of Recursion Theorem
• Application 2: Acc01TM is undecidable

– Similar to the previous example.
– Suppose for contradiction that D is a TM that decides

Acc01TM.
– Construct another machine R using the Recursion

Theorem:
• R: On input w: (ignores its input)

– Obtain < R > (using RT)
– Run D on input <R>
– Do the opposite of what D does:

• If D accepts <R> then reject.
• If D rejects <R> then accept.

• RT says that R exists, assuming decider D exists.

Application 2: Acc01TM is undecidable

• Suppose for contradiction that D decides Acc01TM.
• R: On input w:

– Obtain < R >
– Run D on input <R>
– Do the opposite of what D does:

• If D accepts <R> then reject.
• If D rejects <R> then accept.

• Now get a contradiction, based on what R does on input 01:
– If R accepts 01, then

• D accepts <R> since D is a decider for Acc01TM, so
• R rejects 01 (and everything else), by definition of R.

– If R does not accept 01, then
• D rejects <R> since D is a decider for Acc01TM, so
• R accepts 01 (and everything else), by definition of R.

• Contradiction. So D can’t exist, so Acc01TM is undecidable.

Applications of Recursion Theorem
• Application 3: Using Recursion Theorem to prove

Rice’s Theorem
– Rice’s Theorem: Let P be a nontrivial property of

Turing-recognizable languages. Let MP = { < M > | L(M)
∈ P }. Then MP is undecidable.

– Nontriviality: There is some M1 with L(M1) ∈ P, and
some M2 with L(M2) ∉ P.

– Implies lots of things are undecidable.
– We already proved this; now, a new proof using the

Recursion Theorem.
– Suppose for contradiction that D is a TM that decides

MP.
– Construct machine R using the Recursion Theorem:…

Application 3: Using Recursion
Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages. Let MP = { < M > | L(M) ∈ P }.
Then MP is undecidable.

• Nontriviality: L(M1) ∈ P, L(M2) ∉ P.
• D decides MP.
• R: On input w:

– Obtain < R >
– Run D on input <R>
– If D accepts <R> then run M2 on input w and do the same thing.
– If D rejects <R> then run M1 on input w and do the same thing.

• M1 and M2 are as above, in the nontriviality definition.
• R exists, by the Recursion Theorem.
• Get contradiction by considering whether or not L(R) ∈ P:

Application 3: Using Recursion
Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages. Let MP = { < M > | L(M) ∈ P }.
Then MP is undecidable.

• L(M1) ∈ P, L(M2) ∉ P.
• D decides MP.
• R: On input w:

– Obtain < R >
– Run D on input <R>
– If D accepts <R> then run M2 on input w and do the same thing.
– If D rejects <R> then run M1 on input w and do the same thing.

• Get contradiction by considering whether or not L(R) ∈ P:
– If L(R) ∈ P, then

• D accepts <R>, since D decides MP, so
• L(R) = L(M2) by definition of R, so
• L(R) ∉ P.

Application 3: Using Recursion
Theorem to prove Rice’s Theorem

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages. Let MP = { < M > | L(M) ∈ P }.
Then MP is undecidable.

• L(M1) ∈ P, L(M2) ∉ P.
• D decides MP.
• R: On input w:

– Obtain < R >
– Run D on input <R>
– If D accepts <R> then run M2 on input w and do the same thing.
– If D rejects <R> then run M1 on input w and do the same thing.

• Get contradiction by considering whether or not L(R) ∈ P:
– If L(R) ∉ P, then

• D rejects <R>, since D decides MP, so
• L(R) = L(M1) by definition of R, so
• L(R) ∈ P.

• Contradiction!

Applications of Recursion Theorem
• Application 4: Showing non-Turing-recognizability

– Define MINTM = { < M > | M is a “minimal” TM, that is, no
TM with a shorter encoding recognizes the same
language }.

– Theorem: MINTM is not Turing-recognizable.
– Note: This doesn’t follow from Rice:

• Requires non-T-recognizability, not just undecidability.
• Besides, it’s not a language property.

– Proof:
• Assume for contradiction that MINTM is Turing-recognizable.
• Then it’s enumerable, say by enumerator TM E.
• Define TM R, using the Recursion Theorem:
• R: On input w: …

Application 4: Non-Turing-recognizability
• MINTM = { < M > | M is a “minimal” TM }.
• Theorem: MINTM is not Turing-recognizable.
• Proof:

– Assume that MINTM is Turing-recognizable.
– Then it’s enumerable, say by enumerator TM E.
– R: On input w:

• Obtain <R>.
• Run E, producing list < M1 >, < M2 >, … of all minimal TMs, until

you find some < Mi > with |< Mi >| strictly greater than |< R >|.
– That is, until you find a TM with a rep bigger than yours.

• Run Mi(w) and do the same thing.
– Contradiction:

• L(R) = L(Mi)
• |< R >| less than |< Mi >|
• Therefore, Mi is not minimal, and should not be in the list.

Proof of the Recursion Theorem:
Special case

Proof of Recursion Theorem:
Special Case

• Start with easier first step: Produce a TM corresponding
to P1:

• P1:
– Obtain < P1 >
– Output < P1 >

• P1 outputs its own description.

Q

q(w) = < Pw >

w
• Lemma: (Sipser Lemma 6.1): There is a

computable function q: Σ* → Σ* such
that, for any string w, q(w) is the
description of a TM Pw that just prints out
w and halts.

• Proof: Straightforward construction.
Can hard-wire w in the FSC of Pw.

Proof of RT: Special Case

Q

q(w) = < Pw >

w• Lemma: (Sipser Lemma 6.1): There is a
computable function q: Σ* → Σ* such
that, for any string w, q(w) is the
description of a TM Pw that just prints out
w and halts.

• Now, back to the machine that outputs its own
description…

• Consists of 2 sub-machines, A and B.

• Output of A feeds into B.
• Write as A ° B.

A B

Construction of B

• B expects its input to be the representation <M> of a 1-
input TM (a function-computing TM, not a language
recognizer).
– If not, we don’t care what B does.

• B outputs the encoding of the combination of two
machines, P<M> and M.

• The first machine is P<M>, which simply outputs <M>.
• The second is the input machine M.
• P<M> ° M:

B
<M> < P<M> ° M >

P<M> M
<M> Some output

Construction of B

• How can B generate < P<M> ° M >?
– B can generate a description of P<M> , that is, <P<M>>,

by Lemma 6.1.
– B can generate a description of M, that is, <M>, since it

already has <M> as its input.
– Once B has descriptions of P<M> and M, it can combine

them into a single description of the combined machine
P<M> ° M, that is, < P<M> ° M >.

B
<M> < P<M> ° M >

P<M> M
<M> Some output

Construction of A

• A is P, the machine that just outputs ,
where B is the complicated machine
constructed above.

• A has no input, just outputs .

A

Combining the Pieces

• A ° B:

• Claim A ° B outputs its own description, which is < A ° B >.
• Check this…
• A is P, so the output from A to B is :

• Substituting B for M in B’s output:

A B

A = P B

A = P B
 < P ° B >

Combining the Pieces

• A ° B:

• Claim A ° B outputs its own description, which is < A ° B >.

• The output of A ° B is, therefore, < P ° B > = < A ° B >.
• As needed!

• A ° B outputs its own description, < A ° B >.

A B

A = P B
 < P ° B >

Proof of the Recursion Theorem:
General case

Proof of the RT: General case
• So, we have a machine that outputs its own

description.
• A curiosity---this is not the general RT.
• RT says not just that:

– There is a TM that outputs its own description.
• But that:

– There are TMs that can use their own descriptions, in
“arbitrary ways”.

• The “arbitrary ways” are captured by the
machine T in the RT statement.

T

<M> w

t(<M>, w)

The Recursion Theorem
• Recursion Theorem:

Let T be a TM that computes a
(possibly partial) 2-argument
function t: Σ* × Σ* → Σ*.
Then there is another TM R that
computes the function r: Σ* → Σ*,
where for any w, r(w) = t(<R>, w).

R

t(<R>, w)

w

T

<M> w

t(<M>, w)

The Recursion Theorem
• Recursion Theorem:

Let T be a TM that computes a
(possibly partial) 2-argument
function t: Σ* × Σ* → Σ*.
Then there is another TM R that
computes the function r: Σ* → Σ*,
where for any w, r(w) = t(<R>, w).

R

t(<R>, w)

w

T

<M> w

t(<M>, w)

• Construct R from:
– The given T, and
– Variants of A and B from the special-

case proof.

Proof of RT: General Case
• R looks like:

• Write this as (A ° B) °1 T
– The °1 means that the output from (A ° B)

connects to the first (top) input line of T.

A B
T

Proof of RT: General Case
• R = (A ° B) °1 T

• New A: P<B °1 T>, where B °1 T means:

A B
T

B
T

Proof of RT: General Case
• New B:

• Like B in the special case, but now M is a 2-
input TM.

• P<M> °1 M: 1-input TM, which uses output of
P<M> as first input of M.

B
<M> < P<M> °1 M >

P<M>

M

Combining the Pieces

• R = (A ° B) °1 T

• Claim R outputs t(<R>, w):
• A is P<B °1 T>, so the output from A to B is <B °1 T >:

• Now recall definition of B:
• Plug in B °1 T for M in B’s input, and obtain output for B.

A B
T

w

A = P<B °1 T> B
<B °1 T >

B
<M> < P<M> °1 M >

< P<B °
1

T > °1 (B °1 T) >

Combining the Pieces

• B’s output = < A °1 (B °1 T) > = < R >:

• Now combine with T, plugging in R for M in T’s input:

A = P<B °1 T> B
<B °1 T > < P<B °

1
T > °1 (B °1 T) >

A B
<B °1 T > < R>

T

w

A B
<B °1 T > < R>

t(<R>,w)

Combining the Pieces

• Thus, R = (A ° B) °1 T, on input w, produces
t(<R>,w), as needed for the Recursion Theorem.

T

w

A B
<B °1 T > < R>

t(<R>,w)

R

t(<R>, w)

w

Next time…

• More on computabilty theory
• Reading:

– "Computing Machinery and Intelligence" by Alan
Turing:

http://www.loebner.net/Prizef/TuringArticle.html

http://www.loebner.net/Prizef/TuringArticle.html

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Today
	Self-referencing machines and programs
	Self-referencing machines/programs
	Self-referencing machines/programs
	Self-referencing machines/programs
	Statement of the Recursion Theorem�
	The Recursion Theorem
	The Recursion Theorem
	The Recursion Theorem
	The Recursion Theorem
	The Recursion Theorem
	The Recursion Theorem
	Applications of the Recursion Theorem�
	Applications of Recursion Theorem
	Application 1: AccTM is undecidable
	Application 1: AccTM is undecidable
	Applications of Recursion Theorem
	Application 2: Acc01TM is undecidable
	Applications of Recursion Theorem
	Application 3: Using Recursion Theorem to prove Rice’s Theorem
	Application 3: Using Recursion Theorem to prove Rice’s Theorem
	Application 3: Using Recursion Theorem to prove Rice’s Theorem
	Applications of Recursion Theorem
	Application 4: Non-Turing-recognizability
	Proof of the Recursion Theorem: Special case�
	Proof of Recursion Theorem:�Special Case
	Proof of RT: Special Case
	Construction of B
	Construction of B
	Construction of A
	Combining the Pieces
	Combining the Pieces
	Proof of the Recursion Theorem: General case�
	Proof of the RT: General case
	The Recursion Theorem
	The Recursion Theorem
	Proof of RT: General Case
	Proof of RT: General Case
	Proof of RT: General Case
	Combining the Pieces
	Combining the Pieces
	Combining the Pieces
	Next time…

