
6.045:  Automata, Computability, and 
Complexity

Or, Great Ideas in Theoretical 
Computer Science 

Spring, 2010

Class 9
Nancy Lynch



Today
• Mapping reducibility and Rice’s Theorem
• We’ve seen several undecidability proofs.
• Today we’ll extract some of the key ideas of those 

proofs and present them as general, abstract 
definitions and theorems.

• Two main ideas:
– A formal definition of reducibility from one language to 

another.  Captures many of the reduction arguments we 
have seen.

– Rice’s Theorem, a general theorem about undecidability 
of properties of Turing machine behavior (or program 
behavior).



Today
• Mapping reducibility and Rice’s Theorem
• Topics:

– Computable functions.
– Mapping reducibility, ≤m

– Applications of ≤m to show undecidability and non-
recognizability of languages.

– Rice’s Theorem
– Applications of Rice’s Theorem

• Reading:
– Sipser Section 5.3, Problems 5.28-5.30.



Computable Functions



Computable Functions
• These are needed to define mapping reducibility, ≤m.
• Definition: A function f: Σ1* → Σ2* is computable if there is 

a Turing machine (or program) such that, for every w in 
Σ1*, M on input w halts with just f(w) on its tape.

• To be definite, use basic TM model, except replace qacc
and qrej states with one qhalt state.

• So far in this course, we’ve focused on accept/reject 
decisions, which let TMs decide language membership.

• That’s the same as computing functions from Σ* to              
{ accept, reject }.

• Now generalize to compute functions that produce strings.



Total vs. partial computability
• We require f to be total = defined for every string.
• Could also define partial computable (= partial 

recursive) functions, which are defined on some 
subset of Σ1*.  

• Then M should not halt if f(w) is undefined.



Computable functions
• Example 1:  Computing prime numbers.

– f: { 0, 1 }* → { 0, 1 }* 
– On input w that is a binary representation of positive 

integer i, result is the standard binary representation of 
the ith prime number.

– On inputs representing 0, result is the empty string ε.
• Probably don’t care what the result is in this case, but totality 

requires that we define something.
– For instance:

• f(ε) = f(0) = f(00) = ε
• f(1) = f(01) = f(001) = 10 (binary rep of 2, first prime)
• f(10) = f(010) = 11 (3, second prime)
• f(11) = 101 (5, third prime)
• f(100) = 111 (7, fourth prime)

– Computable, e.g., by sieve algorithm.



Computable functions
• Example 2:  Reverse machine.

– f: { 0, 1 }* → { 0, 1 }* 
– On input w = < M >, where M is a (basic) Turing 

machine, f(w) = < M′ >, where M′ is a Turing machine 
that accepts exactly the reverses of the words accepted 
by M.

– L(M′) = { wR | w ∈ L(M) }
– On inputs w that don’t represent TMs, f(w) = ε.
– Computable:

• M′ reverses its input and then simulates M.
• Can compute description of M′ from description of M.



Computable functions
• Example 3:  Transformations of DFAs, etc.

– We studied several algorithmic transformations 
of DFAs and NFAs:

• NFA → equivalent DFA
• DFA for L → DFA for Lc

• DFA for L → DFA for { wR | w ∈ L }
• Etc.

– All of these transformations can be formalized 
as computable functions (from machine 
representations to machine representations)



Mapping Reducibility



Mapping Reducibility 
• Definition: Let A ⊆ Σ1*, B ⊆ Σ2* be languages.  Then A is 

mapping-reducible to B, A ≤m B, provided that there is a 
computable function f: Σ1* → Σ2* such that, for every string 
w in Σ1*, w ∈ A if and only if f(w) ∈ B.

• Two things to show for “if and only if”:

• We’ve already seen many instance of ≤m in the reductions 
we’ve used to prove undecidability and non-recognizability, 
e.g.:

A

Σ1*

B

Σ2*
f

f



Mapping reducibility examples
• Example:  AccTM ≤m Acc01TM

• <M, w> → <M′M,w>, by computable function f.
• M′M,w behaves as follows:  If M accepts w then it accepts 

everything; otherwise it accepts nothing.
• This f demonstrates mapping reducibility because:

– If <M, w> ∈ AccTM then <M′M,w> ∈ Acc01TM.
– If <M, w> ∉ AccTM then <M′M,w> ∉ Acc01TM.
– Thus, we have “if and only if”, as needed.
– And f is computable.

• Technicality:  Must also map inputs not of the form <M, w> 
somewhere.

Accepts the string 01, possibly others



Mapping reducibility examples
• Example:  AccTM ≤m (ETM)c

• <M, w> → <M′M,w>, by computable function f.
• Use same f as before:  If M accepts w then M′M,w accepts 

everything; otherwise it accepts nothing.
• But now we must show something different:

– If <M, w> ∈ AccTM then <M′M,w> ∈ (ETM)c.
• Accepts something, in fact, accepts everything.

– If <M, w> ∉ AccTM then <M′M,w> ∈ ETM.
• Accepts nothing.

– f is computable.
• Note:  We didn’t show AccTM ≤m ETM.

– Reversed the sense of the answer (took the complement).

Nonemptiness, { M | M accepts some string}



Mapping reducibility examples
• Example:  AccTM ≤m REGTM.

• <M, w> → <M′M,w>, by computable function f.
• We defined f so that:  If M accepts w then M′M,w

accepts everything; otherwise it accepts exactly 
the strings of the form 0n1n, n ≥ 0.

• So <M, w> ∈ AccTM
iff M′M,w accepts a regular language 
iff <M′M,w> ∈ REGTM.

TMs accepting a regular language



Mapping reducibility examples
• Example:  AccTM ≤m MPCP.

• <M, w> → <TM,w, tM,w>, by computable function f, where 
<TM,w, tM,w> is an instance of MPCP (set of tiles + 
distinguished tile). 

• We defined f so that <M, w> ∈ AccTM
iff TM,w has a match starting with tM,w
iff <TM,w, tM,w> ∈ MPCP

• Example:  AccTM ≤m PCP.
• <M, w> → < TM,w> where <M, w> ∈ AccTM iff TM,w has a 

match iff < TM,w> ∈ PCP.

Modified Post Correspondence Problem



Basic Theorems about ≤m
• Theorem 1: If A ≤m B and B is Turing-decidable 

then A is Turing-decidable.
• Proof:

– To decide if w ∈ A:
• Compute f(w)

– Can be done by a TM, since f is computable.
• Decide whether f(w) ∈ B.

– Can be done by a TM, since B is decidable.
• Output the answer.

• Corollary 2: If A ≤m B and A is undecidable then B 
is undecidable.

• So undecidability of AccTM implies undecidability of 
ETM, REGTM, MPCP, etc.



Basic Theorems about ≤m
• Theorem 3: If A ≤m B and B is Turing-recognizable 

then A is Turing-recognizable.
• Proof: On input w:

– Compute f(w).
– Run a TM that recognizes B on input f(w).
– If this TM ever accepts, accept.

• Corollary 4: If A ≤m B and A is not Turing-
recognizable then B is not Turing-recognizable.

• Theorem 5: A ≤m B  if and only if Ac ≤m Bc.
• Proof: Use same f.
• Theorem 6: If A ≤m B and B ≤m C then A ≤m C.
• Proof: Compose the two functions.



Basic Theorems about ≤m

• Theorem 6: If A ≤m B and B ≤m C then A ≤m 
C.

• Example:  PCP
– Showed AccTM ≤m MPCP.
– Showed MPCP ≤m PCP.
– Conclude from Theorem 6 that AccTM ≤m PCP.



More Applications of 
Mapping Reducibility



Applications of ≤m

• We have already used ≤m to show undecidability; 
now use it to show non-Turing-recognizability.

• Example:  Acc01TM
– We already know that Acc01TM is Turing-recognizable.
– Now show that (Acc01TM)c is not Turing-recognizable.
– We showed that AccTM ≤m Acc01TM.
– So (AccTM )c ≤m (Acc01TM)c, by Theorem 5.
– We also already know that (AccTM )c is not Turing 

recognizable.
– So (Acc01TM)c is not Turing-recognizable, by Corollary 4.



Applications of ≤m
• Now an example of a language that is not Turing-

recognizable and whose complement is also not 
Turing-recognizable.

• That is, it’s neither Turing-recognizable nor co-
Turing-recognizable.

• Example:  EQTM = { < M1, M2 > | M1 and M2 are 
TMs and L(M1) = L(M2) }
– Important in practice, e.g.:

• Compare two versions of the “same” program.
• Compare the result of a compiler optimization to the original un-

optimized compiler output.

• Theorem 7: EQTM is not Turing-recognizable.
• Theorem 8: (EQTM)c is not Turing-recognizable.



Applications of ≤m
• EQTM = { < M1, M2 > |  L(M1) = L(M2) }
• Theorem 7: EQTM is not Turing-recognizable.
• Proof:

– Show (AccTM )c ≤m EQTM and use Corollary 4. 
• Already showed (AccTM )c is not Turing-recognizable.

– Equivalently, show AccTM  ≤m (EQTM)c. 
• Equivalent by Theorem 5.

– Need:

– Accepting iff not equivalent.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.
• AccTM  ≤m (EQTM)c:

• Define f(x) so that x ∈ AccTM  iff f(x)∈ (EQTM)c.
• If x is not of the form <M, w> define f(x) = <M0, M0>, where 

M0 is any particular TM.
• Then x ∉ AccTM and f(x) ∈ EQTM, which fits our 

requirements.
• So now assume that x = <M, w>.
• Then define f(x) = <M1, M2>, where:

– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.
• AccTM  ≤m (EQTM)c:

• Assume x = <M, w>, define f(x) = <M1, M2>, where:
– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.
• Proof:

– If x ∈ AccTM, then M accepts w, so M2 accepts everything, so      
<M1, M2>∉EQTM, so <M1, M2> ∈ (EQTM)c.

– If x ∉ AccTM, then M does not accept w, so M2 accepts nothing, so 
<M1, M2>∈EQTM, so <M1, M2> ∉ (EQTM)c.

AccTM (EQTM)c

f

f



EQTM is not Turing-recognizable.

• Assume x = <M, w>, define f(x) = <M1, M2>, where:
– M1 always rejects, and
– M2 ignores its input, runs M on w, and accepts iff M accepts w.

• Claim: x ∈ AccTM  iff f(x)∈ (EQTM)c.
• Therefore, AccTM  ≤m (EQTM)c using f.
• So (AccTM )c ≤m EQTM by Theorem 5.
• So EQTM is not Turing-recognizable, by Corollary 4.

AccTM (EQTM)c

f

f



Applications of ≤m
• We have proved:
• Theorem 7: EQTM is not Turing-recognizable.
• It turns out that the complement isn’t T-recognizable either!
• Theorem 8: (EQTM)c is not Turing-recognizable.
• Proof: Show (AccTM )c ≤m (EQTM)c and use Corollary 4. 

• We know (AccTM )c is not Turing-recognizable.
– Equivalently, show AccTM  ≤m EQTM. 
– Need:

– Accepting iff equivalent.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.
• AccTM  ≤m EQTM:

• Define g(x) so that x ∈ AccTM  iff f(x)∈ EQTM.
• If x is not of the form <M, w> define f(x) = <M0, M0′>, where 

L(M0) ≠ L(M0 ′).
• Then x ∉ AccTM and g(x) ∉ EQTM, as required.
• So now assume x = <M, w>.
• Define g(x) = <M1, M2>, where:

– M1 accepts everything, and
– M2 ignores its input, runs M on w, accepts iff M does (as before).

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.
• AccTM  ≤m EQTM:

• Assume x = <M, w>, define g(x) = <M1, M2>, where:
– M1 accepts everything, and
– M2 ignores its input, runs M on w, and accepts iff M does.

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.
• Proof:

– If x ∈ AccTM, then M1 and M2 both accept everything, so <M1, M2> ∈
EQTM.

– If x ∉ AccTM, then M1 accepts everything and M2 accepts nothing, so 
<M1, M2>∉EQTM.

AccTM EQTM

g

g



(EQTM)c is not Turing-recognizable.

• Assume x = <M, w>, define g(x) = <M1, M2>, where:
– M1 accepts everything, and
– M2 ignores its input, runs M on w, and accepts iff M does.

• Claim: x ∈ AccTM  iff g(x)∈ EQTM.
• Therefore, AccTM  ≤m EQTM using g.
• So (AccTM )c ≤m (EQTM)c by Theorem 5.
• So (EQTM)c is not Turing-recognizable, by Corollary 4.

AccTM EQTM

g

g



Rice’s Theorem



Rice’s Theorem
• We’ve seen many undecidability results for properties of 

TMs, e.g., for:
– Acc01TM = { < M > | 01 ∈ L(M) }
– ETM = { < M > | L(M) = ∅ }
– REGTM = { < M > | L(M) is a regular language }

• These are all properties of the language recognized by the 
machine.

• Contrast with:
– { < M > | M never tries to move left off the left end of the tape }
– { < M > | M has more than 20 states }

• Rice’s Theorem says (essentially) that any property of the 
language recognized by a TM is undecidable.

• Very powerful theorem.
• Covers many problems besides the ones above, e.g.:

– { < M > | L(M) is a finite set }
– { < M > | L(M) contains some palindrome }
– …



Rice’s Theorem
• Rice’s Theorem says (essentially) that any property of the 

language recognized by a TM is undecidable.
• Technicality:  Restrict to nontrivial properties.
• Define a set P of languages, to be a nontrivial property of 

Turing-recognizable languages provided that
– There is some TM M1 such that L(M1) ∈ P, and
– There is some TM M2 such that L(M2) ∉ P.

• Equivalently:
– There is some Turing-recognizable language L1 in P, and
– There is some Turing recognizable language L2 not in P.

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• !



Rice’s Theorem
• P is a nontrivial property of T-recog. languages if:

– There is some TM M1 such that L(M1) ∈ P, and
– There is some TM M2 such that L(M2) ∉ P.

• Rice’s Theorem: Let P be a nontrivial property of Turing-
recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose WLOG that the empty language does not 

satisfy P, that is, ∅ ∉ P.
– Why is this WLOG?

• Otherwise, work with Pc instead of P.
• Then ∅ ∉ Pc, continue the proof using Pc.
• Conclude that MPc is undecidable.
• Implies that MP is undecidable.



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose ∅ ∉ P.
– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
• How do we know such M1 exists?
• Because P is nontrivial.

AccTM MP

f

f



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Proof:
– Show AccTM ≤m MP.
– Suppose ∅ ∉ P.
– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
– Let M2 be any TM such that L(M2) =  ∅, so < M2 > ∉ MP.

AccTM MP

f

f



Rice’s Theorem
• Rice’s Theorem: Let P be a nontrivial property.  Then MP = 

{ < M > | L(M) ∈ P } is undecidable.
• Proof:

– Need:

– Let M1 be any TM such that L(M1) ∈ P, so < M1 > ∈ MP.
– Let M2 be any TM such that L(M2) =  ∅, so < M2 > ∉ MP.
– Define f(x):  

• If x isn’t of the form <M, w>, return something ∉ MP, like < M2 >.
• If x = <M, w>, then f(x) = < M′M,w >, where:

– M′M,w:  On input y:
• …

AccTM MP

f

f



Rice’s Theorem
• Proof:

– Show AccTM ≤m MP.

– L(M1) ∈ P, so < M1 > ∈ MP.
– L(M2) =  ∅, so < M2 > ∉ MP.
– Define f(x):  

• If x = <M, w>, then f(x) = < M′M,w >, where:
– M′M,w:  On input y:

• Run M on w.
• If M accepts w then run M1 on y, accept if M1 accepts y.
• (If M doesn’t accept w or M1 doesn’t accept y, loop 

forever.)

• Tricky…

AccTM MP

f

f



Rice’s Theorem
• Proof:

– Show AccTM ≤m MP.

– L(M1) ∈ P, so < M1 > ∈ MP.
– L(M2) =  ∅, so < M2 > ∉ MP.
– If x = <M, w>, then f(x) = < M′M,w >, where:

• M′M,w:  On input y:
– Run M on w.
– If M accepts w then run M1 on y and accept if M1 accepts y.

– Claim x ∈ AccTM if and only if f(x)∈ MP.
• If x = <M, w> ∈ AccTM then L(M′M,w) = L(M1) ∈ P, so f(x) ∈ MP.
• If x = <M, w> ∉ AccTM then L(M′M,w) =  ∅ ∉ P, so f(x) ∉ MP.

– Therefore, AccTM ≤m MP using f.
– So MP is undecidable, by Corollary 2.

AccTM MP

f

f



Rice’s Theorem
• We have proved:
• Rice’s Theorem: Let P be a nontrivial property of Turing-

recognizable languages.  Let MP = { < M > | L(M) ∈ P }.  
Then MP is undecidable.

• Note:
– Rice proves undecidability, doesn’t prove non-Turing-

recognizability.  
– The sets MP may be Turing-recognizable.

• Example:  P = languages that contain 01
– Then MP = { < M > | 01 ∈ L(M) } = Acc01TM.
– Rice implies that MP is undecidable.
– But we already know that MP = Acc01TM  is Turing-recognizable.

• For a given input < M >, a TM/program can simulate M on 01 
and accept iff this simulation accepts.



More Applications of 
Rice’s Theorem



Applications of Rice’s Theorem
• Example 1: Using Rice

– { < M > | M is a TM that accepts at least 37 different 
strings }

– Rice implies that this is undecidable.
– This set = MP, where P = “the language contains at least 

37 different strings”
– P is a language property.
– Nontrivial, since some TM-recognizable languages 

satisfy it and some don’t.



Applications of Rice’s Theorem
• Example 2: Property that isn’t a language 

property and is decidable
– { < M > | M is a TM that has at least 37 states }
– Not a language property, but a property of a machine’s 

structure.
– So Rice doesn’t apply.
– Obviously decidable, since we can determine the 

number of states given the TM description.



Applications of Rice’s Theorem
• Example 3: Another property that isn’t a language 

property and is decidable
– { < M > | M is a TM that runs for at most 37 steps on 

input 01 }
– Not a language property, not a property of a machine’s 

structure.
– Rice doesn’t apply.
– Obviously decidable, since, given the TM description, 

we can just simulate it for 37 steps.



Applications of Rice’s Theorem
• Example 4: Undecidable property for which Rice’s 

Theorem doesn’t work to prove undecidability
– Acc01SQ = { < M > | M is a TM that accepts the string 

01 in exactly a perfect square number of steps }
– Not a language property, Rice doesn’t apply.
– Can prove undecidable by showing Acc01TM ≤m 

Acc01SQ.
• Acc01TM is the set of TMs that accept 01 in any number of 

steps.
• Acc01SQTM is the set of TMs that accept 01 in a perfect square 

number of steps.
– Design mapping f so that M accepts 01 iff f(M) = < M′ > 

where M′ accepts 01 in a perfect square number of 
steps.

– f(<M>) = < M′ > where…



Applications of Rice’s Theorem
• Example 4: Undecidable property for which Rice doesn’t 

work to prove undecidability
– Acc01SQ = { < M > | M is a TM that accepts the string 

01 in exactly a perfect square number of steps }
– Show Acc01TM ≤m Acc01SQ.
– Design f so M accepts 01 iff f(M) = < M′ > where M′

accepts 01 in a perfect square number of steps.
– f(<M>) = < M′ > where:

• M′:  On input x:
– If x ≠ 01, then reject.
– If x = 01, then simulate M on 01.  If M accepts 01, then 

accept, but just after doing enough extra steps to ensure 
that the total number of steps is a perfect square.

– <M> ∈ Acc01TM iff M′ accepts 01 in a perfect square 
number of steps, iff f(<M>) ∈Acc01SQ.

– So Acc01TM ≤m Acc01SQ, so Acc01SQ is undecidable.



Applications of Rice’s Theorem
• Example 5: Trivial language property

– { < M > | M is a TM and L(M) is recognized by some TM 
having an even number of states }

– This is a language property.
– So it might seem that Rice should apply…
– But, it’s a trivial language property:  Every Turing-

recognizable language is recognized by some TM 
having an even number of states.

• Could always add an extra, unreachable state.
– Decidable or undecidable?
– Decidable (of course), since it’s the set of all TMs.



Applications of Rice’s Theorem
• Example 6:

– { < M > | M is a TM and L(M) is recognized by some TM 
having at most 37 states and at most 37 tape symbols }

– A language property.
– Is it nontrivial?
– Yes, some languages satisfy it and some don’t.
– So Rice applies, showing that it’s undecidable.
– Note:  This isn’t { < M > | M is a TM that has at most 37 

states and at most 37 tape symbols }
• That’s decidable.

– What about { < M > | M is a TM and L(M) is recognized 
by some TM having at least 37 states and at least 37 
tape symbols }?

• Trivial---all Turing-recognizable languages are recognized by 
some such machine.



Next time…

• The Recursion Theorem
• Reading:

– Sipser Section 6.1



MIT OpenCourseWare
http://ocw.mit.edu 

6.045J / 18.400J Automata, Computability, and Complexity 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045:  Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Today
	Computable Functions
	Computable Functions
	Total vs. partial computability
	Computable functions
	Computable functions
	Computable functions
	Mapping Reducibility
	Mapping Reducibility 
	Mapping reducibility examples
	Mapping reducibility examples
	Mapping reducibility examples
	Mapping reducibility examples
	Basic Theorems about m 
	Basic Theorems about m 
	Basic Theorems about m 
	More Applications of �Mapping Reducibility
	Applications of m 
	Applications of m 
	Applications of m 
	EQTM is not Turing-recognizable.
	EQTM is not Turing-recognizable.
	EQTM is not Turing-recognizable.
	Applications of m
	(EQTM)c is not Turing-recognizable.
	(EQTM)c is not Turing-recognizable.
	(EQTM)c is not Turing-recognizable.
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	Rice’s Theorem
	More Applications of �Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Applications of Rice’s Theorem
	Next time…



