
6.045: Automata, Computability, and
Complexity

Or, Great Ideas in Theoretical
Computer Science

Spring, 2010

Class 8
Nancy Lynch

Today
• More undecidable problems:

– About Turing machines: Emptiness, etc.
– About other things: Post Correspondence Problem.

• Topics:
– Undecidable problems about Turing machines.
– The Post Correspondence Problem: Definition
– Computation histories
– First proof attempt
– Second attempt: Undecidability of modified PCP

(MPCP)
– Finish undecidability of PCP

• Reading: Sipser Sections 4.2, 5.1.

Undecidable Problems about Turing
Machines

Undecidable Problems about Turing
Machines

• We already showed that AccTM and HaltTM are not
Turing-decidable (and their complements are not
even Turing-recognizable).

• Now consider some other problems:
– Acc01TM = { <M> | M is a TM that accepts the string 01 }
– EmptyTM = { <M> | M is a TM that accepts no strings}
– RegTM = { <M> | M is a TM and L(M) is regular}
– EQTM, equivalence for TMs, = { < M1, M2 > | M1 and M2

are TMs and L(M1) = L(M2) }

Acc01TM
• Acc01TM = { <M> | M accepts the string 01 }
• Theorem 1: Acc01TM is not Turing-decidable.
• This might seem surprising---it seems simpler than

the general acceptance problem, since it involves
just one particular string.

• Proof attempt:
– Try a reduction---show if you could decide Acc01TM then

you could decide general acceptance problem AccTM.
– Let R be a TM that decides Acc01TM.; design S to

decide AccTM.
– S: On input <M,w>:

• Run R on <M>.
• If R accepts… ??? Gives useful information only if w = 01.
• Doesn’t work.

Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof attempt:

– Let R be a TM that decides Acc01TM.
– S: On input <M,w>:

• Run R on <M>.
• If R accepts… ???
• Doesn’t work.

• How can we use information about what a
machine does on 01 to help decide what a given
machine M will do on an arbitrary w?

• Idea: Consider a different machine---modify M.

Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:

– Let R be a TM that decides Acc01TM.; design S to
decide AccTM.

– S: On input <M,w>:
• Instead of running M on w, S constructs a new machine M′M,w

that depends on M and w.
• M′M,w: On any input x, ignores x and runs M on w.
• Thus, the new machine is the same as M, but hard-wires in the

given input w.

– More precisely:

Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:

– R decides Acc01TM.; design S to decide AccTM.
– S: On input <M,w>:

• Step 1: Construct a new machine <M′M,w >, where
– M′M,w: On input x:

• Run M on w and accept/reject if M does.

• Step 2: Run R on <M′M,w >, and accept/reject if R
does.

– Note that S can construct <M′M,w >
algorithmically, from inputs M and w.

Acc01TM
• Theorem 1: Acc01TM is not Turing-decidable.
• Proof:

– R decides Acc01TM.; design S to decide AccTM.
– S: On input <M,w>:

• Step 1: Construct a new machine <M′M,w >, where
– M′M,w: On input x:

• Run M on w and accept/reject if M does.
• Step 2: Run R on <M′M,w >, and accept/reject if R does.

– Running R on <M′M,w > tells us whether or not M′M,w
accepts 01.

– Claim: M′M,w accepts 01 if and only if M accepts w.
• M′M,w always behaves the same, ignoring its own input and

simulating M on w.
• If M′M,w accepts 01 (or anything else), then M accepts w.
• If M accepts w, then M′M,w accepts 01 (and everything else).

– So S gives the right answer for whether M accepts w.

Acc01TM

• Theorem 1: Acc01TM is not Turing-decidable.
• Theorem: Acc01TM is Turing-recognizable.
• Corollary: (Acc01TM)c is not Turing-recognizable.

EmptyTM
• EmptyTM = { <M> | M is a TM and L(M) = ∅}
• Theorem 2: EmptyTM is not Turing-decidable.
• Proof:

– Reduce AccTM to EmptyTM.
– Modify the given machine M: Given <M,w>, construct a

new machine M′ so that asking whether L(M′) = ∅ gives
the right answer to whether M accepts w:

– Specifically, M accepts w if and only if L(M′) ≠ ∅.
– Use the same machine M′ as for Acc01TM.
– S: On input <M,w>:

• Step 1: Construct < M′M,w > as before, which acts on every
input just like M on w.

• Step 2: Ask whether L(M′M,w) = ∅ and output the opposite
answer.

EmptyTM
• Theorem 2: EmptyTM is not Turing-decidable.
• Proof:

– Reduce AccTM to EmptyTM.
– S: On input <M,w>:

• Step 1: Construct < M′M,w > as before, which acts on every
input just like M on w.

• Step 2: Ask whether L(M′M,w) = ∅ and output the opposite
answer.

– Now M accepts w
if and only if M′M,w accepts everything
if and only if M′M,w accepts something
if and only if L(M′M,w) ≠ ∅.

– So S decides AccTM, contradiction.
– So EmptyTM is not Turing-decidable.

EmptyTM

• Theorem 2: EmptyTM is not Turing-decidable.
• Theorem: (EmptyTM)c is Turing-recognizable.
• Proof: On input <M>, run M on all inputs,

dovetailed, accept if any accept.
• Corollary: EmptyTM is not Turing-recognizable

RegTM
• RegTM = { <M> | M is a TM and L(M) is regular}
• That is, given a TM, we want to know whether its language

is also recognized by some DFA.
• For some, the answer is yes: TM that recognizes 0*1*
• For some, no: TM that recognizes {0n1n | n ≥ 0 }
• We can prove that there is no algorithm to decide whether

the answer is yes or no.
• Theorem 3: RegTM is not Turing-decidable.
• Proof:

– Reduce AccTM to RegTM.
– Assume TM R that decides RegTM, design S to decide AccTM.
– S: On input <M,w>:

• Step 1: Construct a new machine < M′M,w > that accepts a regular
language if and only if M accepts w.

• Tricky…

RegTM
• RegTM = { <M> | L(M) is regular }
• Theorem 3: RegTM is not Turing-decidable.
• Proof:

– Assume R decides RegTM, design S to decide AccTM.
– S: On input <M,w>:

• Step 1: Construct a new machine < M′M,w > that accepts a
regular language if and only if M accepts w.

– M′M,w: On input x:
• If x is of the form 0n1n, then accept.
• If x is not of this form, then run M on w and accept if M

accepts.
• Step 2: Run R on input < M′M,w >, and accept/reject if R does.

RegTM
• Theorem 3: RegTM is not Turing-decidable.
• Proof:

– S: On input <M,w>:
• Step 1: Construct a new machine < M′M,w > that accepts a

regular language if and only if M accepts w.
– M′M,w: On input x:

• If x is of the form 0n1n, then accept.
• If x is not of this form, then run M on w and accept if M

accepts.
• Step 2: Run R on input < M′M,w >, and accept/reject if R does.

– If M accepts w, then M′M,w accepts everything, hence recognizes
the regular language {0,1}*.

– If M does not accept w, then M′M,w accepts exactly the strings of the
form 0n1n, which constitute a non-regular language.

– Thus, M accepts w iff M′M,w recognizes a regular language.

And more questions
• Many more questions about what TMs compute can be

proved undecidable using the same method.
• One more example: EQTM = {<M1, M2> | M1 and M2 are

basic TMs that recognize the same language }
• Theorem 4: EQTM is not Turing-decidable.
• Proof:

– Reduce EmptyTM to EQTM.
– Assume R is a TM that decides EQTM; design S to decide EmptyTM.
– Define any particular TM M∅ with L(M) = ∅ (M accepts nothing).
– S: On input <M>:

• Run R on input <M, M∅>; accept/reject if R does.

– R tells whether <M, M∅> ∈ EQTM, that is, whether L(M) =
L(M∅) = ∅.

An Undecidable Problem not
involving Turing Machines

Post Correspondence Problem
• A simple string-matching problem.
• Given a finite set of “tile types”, e.g.:

• Is there a nonempty finite sequence of tiles (allowing
repetitions, and not necessarily using all the tile types) for
which the concatenation of top strings = concatenation of
bottom strings?

• Example: or

• No limit on length, but must be finite.
• Call such a sequence a match, or correspondence.
• Post Correspondence Problem (PCP) =

{ < T > | T is a finite set of tile types that has a match }

a
a b

c a
a b

b
c

b d
d

a
a b

b d
d

c a
a b

b
c

a
a b

b d
d

Post Correspondence Problem
• Given a finite set of tile types, is there a nonempty finite

sequence of tiles for which the concatenation of top strings
= concatenation of bottom strings?

• Call sequence a match, or correspondence.
• Post Correspondence Problem (PCP) =

{ < T > | T is a finite set of tile types that has a match }.
• Theorem: PCP is undecidable.
• Proof:

– Reduce AccTM to PCP.
– Previous reductions involved reducing one question about TMs

(usually AccTM) to another question about TMs.
– Now we reduce TM acceptance to a question about matching

strings.
– Do this by encoding TM computations using strings…

Computation Histories

Computation Histories
• Computation History (CH): A formal, stylized way

of representing the computation of a TM on a
particular input.

• Configuration:
– Instantaneous snapshot of the TM’s computation.
– Includes current state, current tape contents, current

head position.
– Write in standard form: w1 q w2, where w1 and w2 are

strings of tape symbols and q is a state.
– Meaning:

• w1 w2 is the string on the non-blank portion of the tape, perhaps
part of the blank portion (rest assumed blank).

• w1 is the portion of the string strictly to the left of the head.
• w2 is the portion directly under the head and to the right.
• q is the current state.

Configurations
• Configuration:

– w1 q w2, where w1 and w2 are strings of tape symbols
and q is a state.

– Meaning:
• w1 w2 is the string on the non-blank portion of the tape, perhaps

part of the blank portion (rest assumed blank).
• w1 is the portion of the string strictly to the left of the head.
• w2 is the portion directly under the head and to the right.
• q is the current state.

• Example: 0011q01 represents TM configuration:

0 0 1 1 0

head

1

FSC in state q

Computation Histories
• TM begins in a starting configuration, of the form q0 w,

where w is the input string, and moves through a series of
configurations, following the transition function.

• Computation History of TM M on input w:
– A (finite or infinite) sequence of configs C1, C2, C3, …, Ck,…, where

• C1, C2, … are configurations of M.
• C1 is the starting configuration with input w.
• Each Ci+1 follows from Ci using M’s transition function.

• Accepting CH: Finite CH ending in accepting configuration.
• Rejecting CH: Finite CH ending in rejecting configuration.
• Represent CH as a string # C1 # C2 # … # Ck #, where # is

a special separator symbol.
• Claim: M accepts w iff there is an accepting CH of M on w.

Undecidability of PCP:
First Attempt

First attempt
• Theorem: PCP is undecidable.
• Proof attempt:

– Reduce AccTM to PCP, that is, show that, if we can
decide PCP, then we can decide AccTM.

– Given <M,w>, construct a finite set TM,w of tile types
such that TM,w has a match iff M accepts w.

– That is, TM,w has a match iff there is an accepting CH of
M on w.

– Write the accepting CH twice:
C1 # C2 # C3 # … # Ck
C1 # C2 # C3 # … # Ck

– Split along boundaries of successive configurations:
C1 # C2 # C3 # … # Ck
C1 # C2 # C3 # … # Ck

First attempt
• Given <M,w>, construct a finite set TM,w of tile types s.t.

TM,w has a match iff there is an accepting CH of M on w.
• Write the accepting CH twice, and split along boundaries of

successive configurations:
C1 # C2 # C3 # … # Ck
C1 # C2 # C3 # … # Ck

– What tiles do we need?
– Try TM,w = where

• C1 = starting configuration for M on w,
• Ck = accepting configuration (can assume unique, because we

can assume accepting machine cleans up its tape).
• Cj follows from Ci by rules of M (one step).

#
C1

Ck #
#

Ci #
Cj

First attempt
– TM,w =

• C1 = starting configuration for M on w,
• Ck = accepting configuration.
• Cj follows from Ci by rules of M (one step).

• M accepts w iff TM,w has a match.
• But there is a problem:

– TM,w has infinitely many tile types TM,w, because M has infinitely
many configurations.

– Configuration has tape contents, state, head position---infinitely
many possibilities.

– Of course, in any particular accepting computation, only finitely
many configurations appear.

– But we don’t know what these are ahead of time.
– So we can’t pick a single finite set of tiles.

#
C1

Ck #
#

Ci #
Cj

First attempt
• M accepts w iff TM,w has a match.
• But:

– TM,w has infinitely many tile types TM,w, because M has infinitely
many configurations.

– In any particular accepting computation, only finitely many
configurations appear.

– But we can’t pick a single finite set of tiles for all computations.
• New insight:

– Represent infinitely many configurations with finitely many tiles.
– Going from one configuration to the next involves changing only a

few “local” things:
• State
• Contents of one tape cell
• Position of head, by at most 1

– So let tiles represent small pieces of configs, not entire configs.

Undecidability of Modified PCP

Undecidability of Modified PCP
• Modified PCP (MPCP): Like PCP, but we’re given

not just a finite set of tiles, but also a designated
tile that must start the match.

• MPCP = { <T, t > | T is a finite set of tiles, t is a tile
in T, and there is a match for T starting with t }.

• Theorem: MPCP is undecidable.
• Later, we remove the requirement to start with t:
• Theorem: PCP is undecidable.
• Proof:

– By reducing MPCP to PCP.
– If PCP were decidable, MPCP would be also,

contradiction.

MPCP is undecidable
• Reduce AccTM to MPCP.
• Given <M,w>, construct (TM,w, tM,w), an instance of

MPCP.
• 7 kinds of tiles:
• Type 1 tile:

– w = w1 w2 … wn

– q0 w1 w2 … wn is the starting configuration for input w.
– Bottom string is long, but there’s only one tile like this.
– Tile depends on w, which is OK.
– Make this the initial tile tM,w.

#
q0 w1 w2 … wn

MPCP is undecidable
• Now consider how M goes from one configuration to

the next.
• E.g., by moving right: δ(q,a) = (q′,b,R).
• Config changes using this transition look like (e.g.):

– w1 w2 q a w3 → w1 w2 b q′ w3.
– Only change is to replace q a by b q′.

• Type 2 tiles:
– For each transition of the form δ(q,a) = (q′,b,R):

q a
b q′

MPCP is undecidable
• E.g., moving left: δ(q,a) = (q′,b,L).
• Type 3 tile:

– For each transition of the form δ(q,a) = (q′,b,L), and
every symbol c in the tape alphabet Γ:

– Include arbitrary c because it could be anything.

• Notice, only finitely many tiles (so far).

c q a
q′ c b

MPCP is undecidable
• Now, to match unchanged portions of 2

consecutive configurations:
• Type 4 tile:

– For every symbol a in the tape alphabet Γ:

• Still only finitely many tiles.

a
a

MPCP is undecidable
• What can we do with the tiles we have so far?
• Example: Partial match

– Suppose the starting configuration is q0 1 1 0 and the
first move is (q0, 1) → (q4, 0, R).

– Then the next configuration is 0 q4 1 0.
– We can start the match with tile 1:

– Continue with type 2 tile:

– Use type 4 tiles for the 2 unchanged symbols:
– Yields: # q0 1 1 0 #

q0 1 1 0 # 0 q4 1 0

#
q0 110

q0 1
0 q4

1
1

0
0

MPCP is undecidable
• Now we put in the separators.
• Type 5 tiles:

• Example: Extend previous match:
q0 1 1 0

q0 1 1 0 # 0 q4 1 0

#
#

#
-- #

Allows us to add extra spaces at right end
as needed---lets the configuration size grow.

MPCP is undecidable
• How does this end?
• Type 6 tiles:

– For every a in Γ:
– A trick…
– Adds “pseudo-steps” to the end of the computation,

where the state “eats” adjacent symbols in the top row.
– Yields one symbol less in each successive bottom

configuration.
– Do this until the remaining bottom “configuration” is qacc #:

… # … #

… # … # qacc #

a qacc
qacc

qacc a
qacc

MPCP is undecidable
• To finish off:
• Type 7 tile:

• That completes the definition of TM,w and tM,w.
• Note that TM,w, for a given M and w, is a finite set

of tiles.

qacc # #
#

MPCP is undecidable
• That completes the definition of TM,w and tM,w.
• Note that TM,w, for a given M and w, is a finite set

of tiles.
• Why does this work?
• Must show:

– If M accepts w, then TM,w has a match beginning with
tM,w, that is, <TM,w, tM,w> ∈ MPCP.

– If <TM,w, tM,w> ∈ MPCP, then M accepts w.

• If M accepts w, then there is an accepting
computation history, which can be described by a
match using the given tiles, starting from the
distinguished initial tile:

MPCP is undecidable
• If M accepts w, then there is an accepting computation

history, which can be described by a match using the given
tiles, starting from the distinguished initial tile:

C1 # C2 # C3 # … # Ck # Ck+1 # … # qacc a # qacc #

C1 # C2 # C3 # … # Ck # Ck+1 # … # qacc a # qacc # #

Accepting
configuration Shrink by

one symbol
Keep
shrinking

Final,
special
tile

• So TM,w has a match beginning with tM,w, that is, <TM,w, tM,w>
∈ MPCP.

MPCP is undecidable
• If <TM,w, tM,w> ∈ MPCP, that is, if TM,w has a match

beginning with the designated tile tM,w, then M
accepts w.

• The rules are designed so the only way we can
get a match beginning with the designated tile:

is to have an actual accepting computation of M on
w. Hand-wave, in the book, LTTR.

• Combining the two directions, we get:
M accepts w iff <TM,w, tM,w> ∈ MPCP, that is,
<M, w> ∈ AccTM iff <TM,w, tM,w> ∈ MPCP.

#
q0 w1 w2 … wn

MPCP is undecidable
• <M, w> ∈ AccTM iff <TM,w, tM,w> ∈ MPCP.

• Theorem: MPCP is undecidable.
• Proof:

– By contradiction.
– Assume MPCP is decidable, and decide AccTM, using S:
– S: On input <M, w>:

• Step 1: Construct <TM,w, tM,w>, instance of MPCP, as described.
• Step 2: Use MPCP to decide if TM,w has a match beginning with

tM,w. If so, accept; if not, reject.

– Thus, if MPCP is decidable, then also AccTM is
decidable, contradiction.

Undecidability of (Unmodified) PCP

Undecidability of PCP
• We showed that MPCP, in which the input is a set of tiles +

designated input tile, is undecidable, by reducing AccTM to
MPCP.

• Now we want:
• Theorem: PCP is undecidable.
• Why doesn’t our construction reduce AccTM to PCP?
• TM,v has trivial matches, e.g., just

• Proof of the theorem:
– To show that PCP is undecidable, reduce MPCP to PCP, that is,

show that if PCP is decidable, then so is MPCP.

a
a

Undecidability of PCP
• Theorem: PCP is undecidable.
• Proof:

– Reduce MPCP to PCP.
– To decide MPCP using PCP, suppose we are given:

• T:

• t:

– We want to know if there is a match beginning with t.
– Construct an instance T′ of ordinary PCP that has a

match (starting with any tile) iff T has a match starting
with t.

u1
v1

u1
v1

u2
v2

uk
vk

Undecidability of PCP
• Given T: t:
• Construct an instance T′ of PCP that has a match

iff T has a match starting with t.
• Construction (technical):

– Add 2 new alphabet symbols, ♥ and ♦
– If u = u1 u2…un then define:

• ♥ u = ♥ u1 ♥ u2 … ♥ un

• u ♥ = u1 ♥ u2 … ♥ un ♥
• ♥ u ♥ = ♥ u1 ♥ u2 … ♥ un ♥

– Instance T′ of PCP:

u1
v1

u1
v1

u2
v2

uk
vk

♥ u1
♥ v1 ♥

♥ u1
v1 ♥

♥ ♦
♦

♥ u2
v2 ♥

♥ uk
vk ♥

Undecidability of PCP
• Claim: T has a match starting with t iff T′ has any

match.
⇒ Suppose T has a match starting with t:

Mimic this match with T′ tiles, starting with
and ending with

Yields the same matching strings, with ♥s
interspersed, and with ♦ at the end.

⇐ If T′ has any match, it must begin with
because that’s the only tile in which top and
bottom start with the same symbol.
Other tiles are like T tiles but with extra ♥s.
Stripping out ♥s yields match for T beginning with t.

u1
v1

♥ u1
♥ v1 ♥♥ ♦

♦

♥ u1
♥ v1 ♥

Undecidability of PCP
• So, to decide MPCP using a decider for

PCP:
• Given instance <T, t> for MPCP,

– Step 1: Construct instance T′ for PCP, as
above.

– Step 2: Ask decider for PCP whether T′ has
any match.

• If so, answer yes for <T, t>.
• If not, answer no.

• Since we already know MPCP is
undecidable, so is PCP.

Next time…

• Mapping reducibility
• Rice’s Theorem
• Reading:

– Sipser Section 5.3, Problems 5.28-5.30.

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Undecidable Problems about Turing Machines
	Undecidable Problems about Turing Machines
	Acc01TM
	Acc01TM
	Acc01TM
	Acc01TM
	Acc01TM
	Acc01TM
	EmptyTM
	EmptyTM
	EmptyTM
	RegTM
	RegTM
	RegTM
	And more questions
	An Undecidable Problem not involving Turing Machines
	Post Correspondence Problem
	Post Correspondence Problem
	Computation Histories
	Computation Histories
	Configurations
	Computation Histories
	Undecidability of PCP: �First Attempt
	First attempt
	First attempt
	First attempt
	First attempt
	Undecidability of Modified PCP
	Undecidability of Modified PCP
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	MPCP is undecidable
	Undecidability of (Unmodified) PCP
	Undecidability of PCP
	Undecidability of PCP
	Undecidability of PCP
	Undecidability of PCP
	Undecidability of PCP
	Next time…

