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Today
• Basic computability theory
• Topics:

– Decidable and recognizable languages
– Recursively enumerable languages
– Turing Machines that solve problems involving FAs
– Undecidability of the Turing machine acceptance 

problem
– Undecidability of the Turing machine halting problem

• Reading: Sipser, Sections 3.1, 3.2, Chapter 4
• Next: Sections 5.1, 5.2



Decidable and Recognizable 
Languages



Decidable and recognizable 
languages

• Last time, we began studying the important notion 
of computability.

• As a concrete model of computation, we 
introduced basic one-tape, one-head Turing 
machines.

• Also discussed some variants.
• Claimed they are all equivalent, so the notion of  

computability is robust.
• Today:  Look more carefully at the notions of 

computability and equivalence.



Decidable and recognizable 
languages

• Assume:  TM has accepting state qacc and rejecting state 
qrej.

• Definition: TM M recognizes language L provided that L = 
{ w | M on w reaches qacc } = { w | M accepts w }.

• Another important notion of computability:
• Definition: TM M decides language L provided that both of 

the following hold:
– On every w, M eventually reaches either qacc or qrej.
– L = { w | M on w reaches qacc }.

• Thus, if M recognizes L, then:
– Words in L lead to qacc.
– Words not in L either lead to qrej or never halt (“loop”).

• Whereas if M decides L, then:
– Words in L lead to qacc.
– Words not in L lead to qrej.

Always halts



Decidable and recognizable 
languages

• Theorem 1: If M decides L then M recognizes L.
• Obviously.
• But not necessarily vice versa.
• In fact, these two notions define different language classes:
• Definition:  

– L is Turing-recognizable if there is some TM that recognizes L.
– L is Turing-decidable if there is some TM that decides L.

• The classes of Turing-recognizable and Turing-decidable 
languages are different.

• Theorem 2: If L is Turing-decidable then L is Turing-
recognizable.

• Obviously.
• But the other direction does not hold---there are languages 

that are Turing-recognizable but not Turing-decidable.
• We’ll see some examples soon.



• Theorem 3: If L is Turing-decidable then Lc is T-
decidable.  

• Proof:
– Suppose that M decides L.
– Design a new machine M′ that behaves just like M, but:

• If M accepts, M′ rejects.
• If M rejects, M′ accepts.

– Formally, can do this by interchanging qacc and qrej.
– Then M′ decides Lc.

Decidable and recognizable 
languages



• A basic connection between Turing-recognizable 
and Turing-decidable languages:

• Theorem 4: L is Turing decidable if and only if L 
and Lc are both Turing-recognizable.

• Proof: ⇒
– Suppose that L is Turing-decidable.
– Then L is Turing-recognizable, by Theorem 2.
– Also, Lc is Turing-decidable, by Theorem 3.
– So Lc is Turing-recognizable, by Theorem 2.

• Proof: ⇐
– Given M1 recognizing L, and M2 recognizing Lc.

– Produce a Turing Machine M that decides whether or 
not its input w is in L or Lc.

Decidable and recognizable 
languages



• Theorem 4: L is Turing decidable if and only if L 
and Lc are both Turing-recognizable.

• Proof: ⇐
– Given M1 recognizing L, and M2 recognizing Lc.
– Produce a Turing Machine M that decides whether or 

not its input w is in L or Lc.
– Idea: Run both M1 and M2 on w.

• One must accept.
• If M1 accepts, then M accepts.
• If M2 accepts, then M rejects.

– But, we can’t run M1 and M2 one after the other because 
the first one might never halt.

– Run them in parallel, until one accepts?
– How?  We don’t have a parallel Turing Machine model.

Decidable and recognizable 
languages



• Theorem 4: L is Turing decidable if and only if L and Lc are 
both Turing-recognizable.

• Proof: ⇐
– M1 recognizes L, and M2 recognizes Lc.

– Let M be a 2-tape Turing Machine:

Decidable and recognizable 
languages

M1 M2

M1 M2



• Theorem 4: L is Turing decidable if and only if L 
and Lc are both Turing-recognizable.

Decidable and recognizable 
languages

M1 M2

• Proof: ⇐
– M copies input from 1st tape to 

2nd tape.
– Then emulates M1 and M2

together, step-by-step.
– No interaction between them.
– M’s finite-state control keeps 

track of states of M1 and M2; thus, 
Q includes Q1 × Q2.

– Also includes new start, accept, 
and reject states and whatever 
else is needed for bookkeeping.



Language Classification
• Four possibilities:

– L and Lc are both Turing-recognizable.
• Equivalently, L is Turing-decidable.

– L is Turing-recognizable, Lc is not.
– Lc is Turing-recognizable, L is not.
– Neither L nor Lc is Turing-recognizable.

• All four possibilities occur, as we will see.
• How do we know that there are languages L that are 

neither Turing-recognizable nor co-Turing-recognizable?
• Cardinality argument:

– There are uncountably many languages.
– There are only countably many Turing-recognizable languages and 

only countably many co-Turing-recognizable languages.
– Because there are only countably many Turing machines (up to 

renaming).



Examples
• Example: Every regular language L is 

decidable.
– Let M be a DFA with L(M) = L.
– Design a Turing machine M′ that simulates M.
– If, after processing the input, the simulated M is 

in an accepting state, M′ accepts; else M′
rejects.



Examples
• Example: Let X = be the set of binary 

representations of natural numbers for 
which the following procedure halts:

while x ≠ 1 do
if x is odd then x := 3x + 1
if x is even then x := x/2

halt
– Obviously, X is Turing-recognizable:  just 

simulate this procedure and accept if/when it 
halts.

– Is it decidable?  (?)



Closure Properties
• Theorem 5: The set of Turing-recognizable languages is 

closed under set union and intersection.
• Proof:

– Run both machines in parallel.
– For union, accept if either accepts.
– For intersection, accept if both accept.

• However, the set of Turing-recognizable languages is not 
closed under complement.

• As we will soon see.
• Theorem 6: The set of Turing-decidable languages is 

closed under union, intersection, and complement.
• Theorem 7: Both the Turing-recognizable and Turing-

decidable languages are closed under concatenation and 
star (HW).



Recursively Enumerable Languages



Recursively enumerable languages
• Yet another kind of computability for Turing Machines.
• An enumerator is a Turing Machine variant:

• Starts with a blank work tape (no input).
• Prints a sequence of finite strings (possibly infinitely many) 

on output tape.
• More specifically, e.g.:

– Enters a special state qprint, where contents of work tape, up to first 
blank, are copied to output tape, followed by blank as a separator.

– Then machine continues.
– No accept or reject states.

FSC

Work tape

Output tape



Recursively enumerable languages

• Starts with a blank work tape (no input).
• Prints a sequence of finite strings (possibly infinitely many) 

on output tape.
• It may print the same string more than once.
• If E is an enumerator, then define 

L(E) = { x | x is printed by E }.
• If L = L(E) for some enumerator E, then we say that L is 

recursively enumerable (r.e.).

FSC

Work tape

Output tape



Recursively enumerable languages
• Interesting connection between recursive 

enumerability and Turing recognizability:
• Theorem 8: L is recursively enumerable if and 

only if L is Turing-recognizable.

• Proof: ⇒
– Given E, an enumerator for L, construct Turing machine 

M to recognize L.
– M:  On input x:

• M simulates E (on no input, as usual).
• Whenever E prints, M checks to see if the new output is x.
• If it ever sees x, M accepts.
• Otherwise, M keeps going forever.



Recursively enumerable languages
• Theorem 8: L is recursively enumerable if and 

only if L is Turing-recognizable.
• Proof: ⇐

– Given M, a Turing machine that recognizes L, construct 
E to enumerate L.

– Idea:  
• Simulate M on all inputs.   
• If/when any simulated execution reaches qacc, print out the 

associated input.
– As before, we can’t run M on all inputs sequentially, 

because some computations might not terminate.
– So we must run them in parallel.
– But this time we must run infinitely many computations, 

so we can’t just use a multitape Turing machine.



Recursively enumerable languages
• Theorem 8: L is recursively enumerable if and only if L is 

Turing-recognizable.
• Proof: ⇐

– Given M, a Turing machine that recognizes L, construct E to 
enumerate L.

– Simulate M on all inputs; when any simulated execution reaches 
qacc, print out the associated input.

– New trick:  Dovetailing
• Run 1 step for 1st input string, ε.
• Run 2 steps for 1st and 2nd inputs, ε and 0.
• Run 3 steps for 1st, 2nd, and 3rd inputs, ε, 0 and 1.
• …
• Run more and more steps for more and more inputs.

– Eventually succeeds in reaching qacc for each accepting 
computation of M, so enumerates all elements of L.



Recursively enumerable languages
• Theorem 8: L is recursively enumerable if and 

only if L is Turing-recognizable.
• Proof: ⇐

– Simulate M on all inputs; when any simulated execution 
reaches qacc, print out the associated input.

– Dovetail all computations of M.
– Complicated bookkeeping, messy to work out in detail.
– But can do algorithmically, hence on a Turing machine.



Turing Machines that solve problems 
for other domains besides strings



Turing Machines that solve problems 
for other domains

• [Sipser Section 4.1]
• Our examples of computability by Turing machines 

have so far involved properties of strings, and 
numbers represented by strings.

• We can also consider computability by TMs for 
other domains, such as graphs or DFAs.

• Graphs:
– Consider the problem of whether a given graph has a 

cycle of length > 2.
– Can formalize this problem as a language (set of 

strings) by encoding graphs as strings over some finite 
alphabet.

– Graph = (V,E), V = vertices, E = edges, undirected.



Turing Machines that solve graph problems 

• Consider the problem of whether a given graph has a cycle 
of length > 2.

• Formalize as a language (set of strings) by encoding 
graphs as strings over some finite alphabet.

• Graph = (V,E), V = vertices, E = edges, undirected.
• A standard encoding: 

– Vertices = positive integers (represented in binary)
– Edges = pairs of positive integers 
– Graph = list of vertices, list of edges.

• Example: ( ( 1, 2, 3 ), ( ( 1, 2 ), (2, 3) ) )
• Write <G> for the encoding of G.

1

3

2



Turing Machines that solve graph problems

• Consider the problem of whether a given graph 
has a cycle of length > 2.

• Graph = (V,E), V = vertices, E = edges, 
undirected.

• Write <G> for the encoding of G.
• Using this representation for the input, we can 

write an algorithm to determine whether or not a 
given graph G has a cycle, and formalize the 
algorithm using a Turing machine.
– E.g., search and look for repeated vertices.

• So cyclicity is a decidable property of graphs.



Turing Machines that solve problems 
for other domains

• We can also consider computability for domains 
that are sets of machines:

• DFAs:
– Encode DFAs using bit strings, by defining standard 

naming schemes for states and alphabet symbols.
– Then a DFA tuple is again a list.
– Example: 

Encode as: 
( (1, 2), (0, 1), ( (1, 1, 1), (1, 0, 2),  (2, 0, 2), (2, 1, 2) ), (1), (2) )

– Encode the list using bit strings.
– Write <M> for the encoding of M.
– So we can define languages whose elements are (bit 

strings representing) DFAs.

1
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Turing Machines that solve DFA problems
• Example: L1 = { < M > | L(M) = ∅ } is Turing-decidable
• Elements of L1 are bit-string representations of DFAs that 

accept nothing (emptiness problem).
• Already described an algorithm to decide this, based on 

searching to determine whether any accepting state is 
reachable from the start state.

• Could formalize this (painfully) as a Turing machine.
• Proves that  L1 is Turing-decidable.

• Similarly, all the other decision problems we considered for 
DFAs, NFAs, and regular expressions are Turing-decidable 
(not just Turing-recognizable).

• Just represent the inputs using standard encodings and 
formalize the algorithms that we’ve already discussed, 
using Turing machines.



Turing Machines that solve DFA problems

• Example: Equivalence for DFAs
L2 = { < M1, M2 > | L(M1) = L(M2) } is Turing-decidable.

• Elements of L2 are bit-string representations of 
pairs of DFAs that recognize the same language.

• Note that the domain we encode is pairs of DFAs.
• Already described an algorithm to decide this, 

based on testing inclusion both ways; to test 
whether L(M1) ⊆ L(M2), just test whether L(M1) ∩
(L(M2))c = ∅.

• Formalize as a Turing machine.
• Proves that  L2 is Turing-decidable.



Turing Machines that solve DFA problems
• Example: Acceptance for DFAs

L3 = { < M, w > | w ∈ L(M) } is Turing-decidable.
• Domain is (DFA, input) pairs.
• Algorithm simply runs M on w.
• Formalize as a Turing machine.
• Proves that  L3 is Turing-decidable.



Moving on…
• Now, things get more complicated:  we 

consider inputs that are encodings of Turing 
machines rather than DFAs.

• In other words, we will discuss Turing 
machines that decide questions about 
Turing machines!



Undecidability of the Turing Machine 
Acceptance Problem 



Undecidability of TM Acceptance Problem

• Now (and for a while), we will focus on showing 
that certain languages are not Turing-decidable, 
and that some are not even Turing-recognizable.

• It’s easy to see that such languages exist, based 
on cardinality considerations.

• Now we will show some specific languages are not 
Turing decidable, and not Turing-recognizable.

• These languages will express questions about 
Turing machines.



Undecidability of TM Acceptance
• We have been discussing decidability of problems 

involving DFAs, e.g.:
{ < M > | M is a DFA and L(M) = ∅ }, decidable by Turing machine that 

searches M’s digraph.
{ < M, w > | M is a DFA, w is a word in M’s alphabet, and w ∈ L(M) }, 

decidable by a Turing machine that emulates M on w.
• Turing machines compute only on strings, but we can 

regard them as computing on DFAs by encoding the DFAs
as strings (using a standard encoding).

• Now we consider encoding Turing machines as strings, 
and allowing other Turing machines to compute on these 
strings.

• Encoding of Turing machines:  Standard state names, lists, 
etc., similar to DFA encoding.

• <M> = encoding of Turing machine M.
• <M, w> = encoding Turing machine + input string
• Etc.



Problems we will consider
• AccTM = { < M, w > | M is a (basic) Turing machine, w is a 

word in M’s alphabet, and M accepts w }.
• HaltTM = { < M, w > | M is a Turing machine, w is a word in 

M’s alphabet, and M halts (either accepts or rejects) on w }.
• EmptyTM = { < M > | M is a Turing machine and L(M) = ∅ }

– Recall:  L(M) refers to the set of strings M accepts.
• Etc.

• Thus, we can formulate questions about Turing machines 
as languages.

• Then we can ask if they are Turing-decidable; that is, can 
some particular TM answer these questions about all 
(basic) TMs?

• We’ll prove that they cannot.



The Acceptance Problem
• AccTM = { < M, w > | M is a (basic) Turing machine and M 

accepts w }.
• Theorem 1: AccTM is Turing-recognizable.
• Proof:

– Construct a TM U that recognizes AccTM.
– U:  On input < M, w >:

• Simulate M on input w.
• If M accepts, accept.
• If M rejects, reject.
• Otherwise, U loops forever.

– Then U accepts exactly < M, w> encodings for which M accepts w.

• U is sometimes called a universal Turing machine because 
it runs all TMs.
– Like an interpreter for a programming language.



The Acceptance Problem
• AccTM = { < M, w > | M is a TM and M accepts w }.
• U:  On input < M, w >:

– Simulate M on input w.
– If M accepts, accept.
– If M rejects, reject.
– Otherwise, U loops forever.

• U recognizes AccTM.
• U is a universal Turing machine because it runs all 

TMs.
• U uses a fixed, finite set of states, and set of 

alphabet symbols, but still simulates TMs with 
arbitrarily many states and symbols.
– All encoded using the fixed symbols, decoded during 

emulation.



The Acceptance Problem
• AccTM = { < M, w > | M is a TM and M accepts w }.
• U:  On input < M, w >:

– Simulate M on input w.
– If M accepts, accept.
– If M rejects, reject.
– Otherwise, U loops forever.

• U recognizes AccTM.
• Does U decide  AccTM ?
• No.  

– If M loops forever on w, U loops forever on <M,w>, 
never accepts or rejects.

– To decide, U would have to detect when M is looping
and reject.

– Seems difficult…



Undecidability of Acceptance

• Theorem 2: AccTM is not Turing-decidable.
• Proof:

– Assume that AccTM is Turing-decidable and produce a 
contradiction.

– Similar to the diagonalization argument that shows that 
we can’t enumerate all languages.

– Since (we assume) AccTM is Turing-decidable, there 
must be a particular TM H that decides AccTM:

• H(<M,w>):
– accepts if M accepts w,
– rejects if M rejects w,
– rejects if M loops on w.



Undecidability of Acceptance

• Theorem 2: AccTM is not Turing-decidable.
• Proof, cont’d:

– H(<M,w>) accepts if M accepts w, rejects if M rejects w 
or if M loops on w.

– Use H to construct another TM H′ that decides a special 
case of the same language.

– Instead of considering whether M halts on an arbitrary 
w, just consider M on its own representation:

– H′(<M>):
• accepts if M accepts <M>, 
• rejects if M rejects <M> or if M loops on <M>.

– If H exists, then so does H′:  H′ simply runs H on certain 
arguments.



Undecidability of Acceptance

• Theorem 2: AccTM is not Turing-decidable.
• Proof, cont’d:

– H′(<M>):
• accepts if M accepts <M>, 
• rejects if M rejects <M> or if M loops on <M>.

– Now define D (the diagonal machine) to do the opposite 
of H′:

– D(<M>):
• rejects if M accepts <M>, 
• accepts if M rejects <M> or if M loops on <M>.

– If H′ exists, then so does D:  D runs H′ and outputs the 
opposite.



Undecidability of Acceptance
• Theorem 2: AccTM is not Turing-decidable.
• Proof, cont’d:

– D(<M>):
• rejects if M accepts <M>, 
• accepts if M rejects <M> or if M loops on <M>.

– Now, what happens if we run D on <D>?  
– Plug in D for M:
– D(<D>):

• rejects if D accepts <D>, 
• accepts if D rejects <D> or if D loops on <D>.

– Then D accepts <D> if and only if D does not accept <D>, 
contradiction!

– So AccTM is not Turing-decidable.
– !!!



Diagonalization Proofs
• This undecidability proof for AccTM is an example of a 

diagonalization proof.
• Earlier, we used diagonalization to show that the set of all 

languages is not countable.
• Consider a big matrix, with TMs labeling rows and strings 

that represent TMs labeling columns.
• The major diagonal describes results for M(<M>), for all M.
• D is a diagonal machine, constructed explicitly to differ 

from the diagonal entries:  D(<M>)’s result differs from 
M(<M>)’s.

• Implies that D itself can’t appear as a label for a row in the 
matrix, a contradiction since the matrix is supposed to 
include all TMs.



Summary:  AccTM

• We have shown that AccTM = { < M, w > | M is a 
Turing machine and M accepts w } is Turing-
recognizable but not Turing-decidable.

• Corollary: (AccTM)c is not Turing-recognizable.
• Proof:

– By Theorem 4.  
– If AccTM and (AccTM)c were both Turing-recognizable, 

then AccTM would be Turing-decidable.



Undecidability of the Turing Machine 
Halting Problem 



The Halting Problem
• HaltTM = { < M, w > | M is a Turing machine and M halts on 

(either accepts or rejects) w }.
• Compare with AccTM = { < M, w > | M is a Turing machine 

and M accepts w }.
• Terminology caution: Sipser calls AccTM the “halting 

problem”, and calls HaltTM just HaltTM.
• Theorem: HaltTM is not Turing-decidable.
• Proof:  

– Let’s not use diagonalization.
– Rather, take advantage of diagonalization work already done for 

AccTM, using new method:  reduction.
– Prove that, if we could decide HaltTM, then we could decide AccTM.
– Reduction is a very powerful, useful technique for showing 

undecidability; we’ll use it several times.
– Also useful (later) to show inherent complexity results.



The Halting Problem
• HaltTM = { < M, w > | M halts on (accepts or rejects) w }.
• Theorem: HaltTM is not Turing-decidable.
• Proof:  

– Suppose for contradiction that HaltTM is Turing-
decidable, say by Turing machine R:

• R(<M,w>):
– accepts if M halts on (accepts or rejects) w,
– rejects if M loops (neither accepts nor rejects) on w.

– Using R, define new TM S to decide AccTM:
• S:  On input <M,w>:

– Run R on <M,w>; R must either accept or reject; can’t loop, 
by definition of R.

– If R accepts then  M must halt (accept or reject) on w.  Then 
simulate M on w, knowing this must terminate.  If M 
accepts, accept.  If M rejects, reject.

– If R rejects, then reject.



The Halting Problem
• Theorem: HaltTM is not Turing-decidable.
• Proof:  

– Suppose HaltTM is Turing-decidable by TM R.
• S:  On input <M,w>:

– Run R on <M,w>; R must either accept or reject; can’t loop, 
by definition of R.

– If R accepts then  M must halt (accept or reject) on w.  Then 
simulate M on w, knowing this must terminate.  If M 
accepts, accept.  If rejects, reject.

– If R rejects, then reject.
– Claim S decides AccTM:  3 cases:

• If M accepts w, then R accepts <M,w>, and the simulation leads 
S to accept.

• If M rejects w, then R accepts <M,w>, and the simulation leads 
S to reject.

• If M loops on w, then R rejects <M,w>, and S rejects.
• That’s what’s supposed to happen in three cases, for AccTM.



The Three Cases

M accepts w M loops on wM rejects w

R distinguishes these two cases

Now S knows that M will terminate,
simulates M on w.

S knows that M loops, rejects.

S distinguishes these two cases.



The Halting Problem
• Theorem: HaltTM is not Turing-decidable.
• Proof:  

– Suppose HaltTM is Turing-decidable by TM R.
– S:  On input <M,w>:

– Run R on <M,w>; R must either accept or reject; 
can’t loop, by definition of R.

– If R accepts then  M must halt (accept or reject) 
on w.  Then simulate M on w, knowing this must 
terminate.  If M accepts, accept.  If rejects, reject.

– If R rejects, then reject.
– S decides AccTM.
– So AccTM is decidable, contradiction.
– Therefore, HaltTM is not Turing-decidable.



The Halting Problem
• Theorem: HaltTM is not Turing-decidable.
• Also:
• Theorem: HaltTM is Turing-recognizable.
• So:
• Corollary: (HaltTM)c is not Turing-recognizable.



Next time…

• More undecidable problems:
– About Turing machines:

• Emptiness, etc.
– About other things:

• Post Correspondence Problem (a string matching 
problem).

• Reading: Sipser Sections 4.2, 5.1.



MIT OpenCourseWare
http://ocw.mit.edu 

6.045J / 18.400J Automata, Computability, and Complexity 
Spring 2011 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045:  Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Decidable and Recognizable Languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Decidable and recognizable languages
	Language Classification
	Examples
	Examples
	Closure Properties
	Recursively Enumerable Languages
	Recursively enumerable languages
	Recursively enumerable languages
	Recursively enumerable languages
	Recursively enumerable languages
	Recursively enumerable languages
	Recursively enumerable languages
	Turing Machines that solve problems for other domains besides strings
	Turing Machines that solve problems for other domains
	Turing Machines that solve graph problems 
	Turing Machines that solve graph problems
	Turing Machines that solve problems for other domains
	Turing Machines that solve DFA problems
	Turing Machines that solve DFA problems
	Turing Machines that solve DFA problems
	Moving on…
	Undecidability of the Turing Machine Acceptance Problem 
	Undecidability of TM Acceptance Problem
	Undecidability of TM Acceptance
	Problems we will consider
	The Acceptance Problem
	The Acceptance Problem
	The Acceptance Problem
	Undecidability of Acceptance
	Undecidability of Acceptance
	Undecidability of Acceptance
	Undecidability of Acceptance
	Diagonalization Proofs
	Summary:  AccTM
	Undecidability of the Turing Machine Halting Problem 
	The Halting Problem
	The Halting Problem
	The Halting Problem
	The Three Cases
	The Halting Problem
	The Halting Problem
	Next time…



