
6.045: Automata, Computability, and
Complexity

Or, Great Ideas in Theoretical
Computer Science

Spring, 2010

Class 5
Nancy Lynch

Today
• Non-regular languages
• Today’s topics:

– Existence of non-regular languages
– Showing some specific languages aren’t regular
– The Pumping Lemma
– Examples
– Algorithms that answer questions about FAs.

• Reading: Sipser, Sections 1.4, 4.1.
• Next:

– Computability theory
– Readings:

• Sipser Chapter 3
• The Nature of Computation, Chapter 8
• GITCS notes, lecture 4

Existence of Non-Regular
Languages

Existence of non-regular languages
• Theorem: There is a language over Σ = { 0, 1 }

that is not regular.
• (Works for other alphabets too.)
• Proof:

– Recall, a language is any (finite or infinite) set of (finite)
strings.

– It turns out that there are many more sets of finite
strings than there are DFAs; so just based on
cardinality, there must be some non-regular languages.

– But, there are infinitely many sets of strings, and
infinitely many DFAs---so what does it mean to say that
one of these is “more” than the other?

– Answer: There are different kinds of infinities:
• Countably infinite sets, like the natural numbers or the integers.
• Uncountably infinite sets, like the reals.
• Also, different sizes of uncountable infinities.

Existence of non-regular languages
• Theorem: There is a language over Σ = { 0, 1 }

that is not regular.
• Proof:

– Follows from two claims:
– Claim 1: The set of all languages over Σ = { 0, 1 } is

uncountable, that is, it cannot be put into one-to-one
correspondence with N (natural numbers).

– Claim 2: The set of regular languages is countable.

Claim 1
• Claim 1: The set of all languages over Σ = { 0, 1 } is

uncountable, that is, it cannot be put into one-to-one
correspondence with N.

• Proof of Claim 1: By contradiction.
– Suppose it is countable.
– Then we can put the set of all languages in one-to-one

correspondence with N, e.g.:
0 ………. ∅ L0
1 ………. { 0 } L1
2 ………. All even-length strings (an infinite language) L2
3 ………. All strings containing at least one 0 L3

Etc.

All (finite and infinite) sets of (finite) strings must appear in this list.

Claim 1
• Claim 1: The set of all languages over Σ = { 0, 1 } is

uncountable, that is, it cannot be put into one-to-one
correspondence with N (the natural numbers).

• Proof, cont’d:
– Clarify:

• Σ* is the set of all (finite) strings over Σ = { 0, 1 }.
• P(Σ*) is the set of all sets of strings, or languages, over Σ.
• Right column lists all languages, that is, all elements of P(Σ*).

– Σ*, the set of all finite strings, is countable:
• We can list all finite strings in order of length, put them in one-

to-one correspondence with N.
• E.g., ε, 0, 1, 00, 01, 10, 11, 000,…

– Since there is a correspondence between N and Σ*, and
we assumed one between N and P(Σ*), there must be a
correspondence between Σ* and P(Σ*), e.g.:

Claim 1
ε ………. ∅ L0
0 ………. { 0 } L1
1 ………. All even-length strings (an infinite language) L2
00 ………. All strings containing at least one 0. L3
Etc.

• Call the correspondence f, so we have f(ε) = L0, f(0) = L1,
f(1) = L2, etc.

• Now define D, the diagonal set of strings:
D = { w ∈ Σ* | w is not in f(w) }

• Examples:
– ε is in D, because ε is not in ∅
– 0 is not in D, because 0 is in { 0 }
– 1 is in D, because 1 is not an even-length string.
– 00 is not in D, because 00 contains at least one 0.

Etc.

Claim 1
• Now the twist…
• Since the right column includes all subsets of Σ*, D itself

appears somewhere.
• That is, D = f(x) for some string x.

x ………. D = { w | w is not in f(w) }
• Tricky question: Is this string x in D or not?
• Two possibilities:

– If x is in D, then x is not in f(x) by definition of D, so x is not in D
since D = f(x).

– If x is not in D, then x is in f(x) by definition of D, so x is in D since
D = f(x).

• Either way, a contradiction.
• Implies that no such mapping f exists.
• So there is no correspondence between N and P(Σ*).
• So P(Σ*), the set of languages over Σ, is uncountable.

Claim 2
• Claim 2: The set of regular languages is countable.
• Proof:

– Each regular language is recognized by some DFA.
– Each DFA has a finite description: states, start states,

transitions,…
– Can write each of these using standard names for states, without

changing the language.
– Can enumerate these “standard form” DFAs in order of length.
– Leads to an enumeration of the regular languages.

• Since P(Σ*), the set of all languages, is uncountable,
whereas the set of regular languages is countable, some
language must be non-regular.

• In fact, by considering different kinds of infinity, one can
prove that “most” languages are non-regular.

Showing specific languages are
non-regular

Showing languages are non-regular
• Basic tool: Pigeonhole Principle: If you put > n

pigeons into n holes, then some hole has > 1
pigeon.

• Example 1: L1 = { 0n1n | n > 0 } is non-regular
– E.g., 0011 is in L1, 011 is not.
– Show by contradiction, using Pigeonhole Principle.
– Assume L1 is regular.
– Then there is a DFA M = (Q, Σ, δ, q0, F) recognizing L1.
– Now define:

• Pigeons = all strings in 0*.
• Holes = states in Q.

– Put pigeon 0i into hole δ*(q0, 0i), that is, the hole
corresponding to the state reached by input 0i.

Showing languages are non-regular
• Example 1: L1 = { 0n1n | n ≥ 0 } is non-regular

– Assume L1 is regular.
– Then there is a DFA M = (Q, Σ, δ, q0, F) recognizing L1.
– Define:

• Pigeons = all strings in 0*.
• Holes = states in Q.

– Put pigeon 0i into hole δ*(q0, 0i), that is, the hole
corresponding to the state reached by input 0i.

– There are |Q| holes, but > |Q| pigeons (actually, infinitely
many).

– So by Pigeonhole Principle, 2 pigeons must be put in
the same hole, say 0i and 0j with i < j.

– That is, 0i and 0j lead to the same state.
– Then since M accepts 0i1i, it also accepts 0j1i, which is

incorrect, contradiction.

Showing languages are non-regular
• Example 1: L1 = { 0n1n | n ≥ 0 } is non-regular

– Assume L1 is regular.
– Then there is a DFA M = (Q, Σ, δ, q0, F) recognizing L1.
– 0i and 0j lead to the same state.
– Then since M accepts 0i1i, it also accepts 0j1i, which is

incorrect, contradiction.

0i

q0

1i

0j-i

0i1i leads to the final state, so 0j1i does also.

Showing languages are non-regular
• Example 2: L2 = { 010010001…0i1 | i is any

positive integer } is non-regular
– Show by contradiction, using Pigeonhole Principle.
– Assume L2 is regular, so there is a DFA

M = (Q, Σ, δ, q0, F) recognizing L2.
– Define:

• Pigeons = all strings in L2.
• Holes = states.

– Put pigeon string into hole corresponding to the state it
leads to.

– By the Pigeonhole Principle, two pigeons share a hole,
say 01…0i1 and 01…0j1, where j > i.

– So 01…0i1 and 01…0j1 lead to the same state.
– M accepts 01…0i10i+11.
– So M accepts 01…0j10i+11, incorrect, contradiction.

Showing languages are non-regular
• Example 3: L3 = { w w | w ∈ { 0, 1 }* } is non-

regular
– Show by contradiction, using Pigeonhole Principle.
– Assume L3 is regular, so there is a DFA

M = (Q, Σ, δ, q0, F) recognizing L3.
– Define:

• Pigeons = strings of the form 0i1 where i is a nonnegative
integer; that is, 1, 01, 001,…

• Holes = states.
– Put pigeon string into hole corresponding to the state it

leads to.
– By the Pigeonhole Principle, two pigeons share a hole,

say 0i1 and 0j1, where j > i.
– So 0i1 and 0j1 lead to the same state.
– M accepts 0i10i1.
– So M accepts 0j10i1, incorrect, contradiction.

The Pumping Lemma

Pumping Lemma
• Use Pigeonhole Principle (PHP) to prove a general result

that can be used to show many languages are non-regular.
• Theorem (Pumping Lemma):

– Let L be a regular language, recognized by a DFA with p states.
– Let x ∈ L with |x| ≥ p.
– Then x can be written as x = u v w where |v| ≥ 1, so that for all m ≥

0, u vm w ∈ L.
– In fact, it is possible to subdivide x in a particular way, with the total

length of u and v being at most p: | u v | ≤ p.

• That is, we can take any sufficiently long word in the
language, and find some piece that can be added in any
number of times to get other words in the language
(“pumping up”).

• Or, we could remove the piece (“pumping down”).
• And this piece could be chosen to be near the beginning of

the word.

Pumping Lemma
• Theorem (Pumping Lemma):

– Let L be a regular language, recognized by a DFA with p states.
– Let x ∈ L with |x| ≥ p.
– Then x can be written as x = u v w where |v| ≥ 1, so that for all m ≥

0, u vm w ∈ L.
• Proof (of the basic lemma):

– Consider x ∈ L with |x| ≥ p.
– Write x = a1 a2 a3 … ak in L, where k ≥ p.
– Suppose x passes through states q0, q1, …, qk, where q0 is the start

state and qk is an accept state.

– Since there are at least p+1 state occurrences and M has only p
states, two state occurrences must be the same, by PHP.

– Say qi = qj for some i < j.

q0 q2q1 qk

a1 a2 a3 ak

Pumping Lemma
• Theorem (Pumping Lemma):

– Let L be a regular language, recognized by a DFA with p states.
– Let x ∈ L with |x| ≥ p.
– Then x can be written as x = u v w where |v| ≥ 1, so that for all m ≥

0, u vm w ∈ L.
• Proof:

– Assume x = a1 a2 a3 … ak in L, where k ≥ p.

– qi = qj, i < j.
– Write u = a1 … ai, v = ai+1 … aj, and w = aj+1 … ak.
– Claim this works:

• x = u v w, obviously.
• |v| = | ai+1 … aj |≥ 1, since i < j.
• u vm w is accepted, since it follows the loop m times (possibly 0

times).

q0 q2q1 qk

a1 a2 a3 ak

The loop
• u vm w is accepted, since it follows the loop m

times (possibly 0 times).

u = a1 … ai

q0 qk

w = aj+1 … ak

v = ai+1 … aj

qi = qj

Getting the extra condition
• Theorem (Pumping Lemma):

– Let L be a regular language, recognized by a DFA with p states.
– Let x ∈ L with |x| ≥ p.
– Then x can be written as x = u v w where |v| ≥ 1, so that for all m ≥

0, u vm w ∈ L.
– In fact, it is possible to subdivide x in a particular way, with the total

length of u and v being at most p: | u v | ≤ p.
• Proof:

– Consider x ∈ L with |x| ≥ p.
– Write x = a1 a2 a3 … ak in L, where k ≥ p.
– Suppose x passes through states q0, q1, …, qk.

– Two state occurrences must be the same, by PHP.
– We can choose these two occurrences to be among the first p+1.
– Then | u v | ≤ p.

q0 q2q1 qk

a1 a2 a3 ak

Example 1, revisited
• L1 = { 0n1n | n ≥ 0 } is non-regular.
• Suppose there is a DFA for L1 with p states.
• We pick a particular word x in L1 and pump it to get a

contradiction.
• Choose x = 0p1p, where p is the number of states.
• Then the Pumping Lemma says that x can be written as u

v w, with |v| ≥ 1, so that u v v w is also in L1.
– We’re using m = 2 here.

• We get a contradiction, by considering three cases:
– v consists of 0s only: Then u v v w contains at least one extra 0,

the same 1s, can’t match.
– v consists of 1s only: At least one extra 1, can’t match.
– v consists of a mix of 0s and 1s: Then u v v w contains a 1 before

a 0, so u v v w can’t be in L1.

Example 3, revisited
• L3 = { w w | w ∈ { 0, 1 }* } is non-regular.
• Suppose there is a DFA for L3 with p states.
• Pick a word x in L3 and pump it to get a contradiction.
• Choose x = 0p 1 0p 1, where p is the number of states.
• Pumping Lemma says that x can be written as u v w, with

|v| ≥ 1, so that u vm w is also in L3, for every m.
• But so what?

– The PL might give us v = x, u = w = ε.
– Then adding in v any number of times, or removing v, yields a

string in L3.
– E.g., if x = 001001, and v = x, then u v v w = 001001001001, which

is in L3 .
– No contradiction here.

Example 3, revisited
• L3 = { w w | w ∈ { 0, 1 }* } is non-regular.
• Choose x = 0p 1 0p 1, where p is the number of states.
• Pumping Lemma says that x can be written as u v w, with

|v| ≥ 1, so that u vm w is also in L3, for every m.
• No contradiction here.
• So we use the extra condition, making the repeating part

appear near the beginning: | u v | ≤ p.
• This implies that uv must contain only 0s.
• Then u v v w does yield a contradiction: it adds in at least

one 0, in the first part only, yielding unequal-length runs of
0s.

Example 3, revisited
• L3 = { w w | w ∈ { 0, 1 }* } is non-regular.
• Choose x = 0p 1 0p 1, where p is the number of states.
• Then x can be written as u v w, with |v| ≥ 1, so that u vm w

is also in L3, for every m, and so that | u v | ≤ p.
• This implies that uv must contain only 0s.
• Then u v v w does yield a contradiction: it adds in at least

one 0, in the first part only, yielding unequal-length runs of
0s.

• Note: It was important to pick the right string to pump.
– E.g., if we chose x = 010101…, an even number of repetitions of

01, then we could pump all we want and not get a contradiction.
– The PL might give us x = u v w with v = 0101.
– Adding in 0101 any number of times yields a string in L3 .

More Examples

Example 4: Palindromes
• L4 = PAL = { w ∈ {0,1}* | w = wR } is non-regular.
• Suppose there is a DFA for PAL with p states.
• Pick a word x in PAL and pump it to get a contradiction.
• Choose x = 0p 1 0p; clearly x is in PAL
• The Pumping Lemma yields x = u v w, |v| ≥ 1, |uv| ≤ p, and

u vm w in PAL for every m.
• Thus, the pumping part is near the beginning of x.
• Since |uv| ≤ p, uv consists of 0s only.
• Since |v| ≥ 1, v contains at least one 0.
• Then u v v w must be in PAL.
• But this can’t be, because we added at least one 0 in the

first part and not in the second part.

Example 5
• L5 = EQ = { w ∈ {0,1}* | w contains the same

number of 0s and 1s} is non-regular.
• Suppose there is a DFA for EQ with p states.
• Choose x = 0p 1p to pump; clearly x is in EQ.
• The Pumping Lemma yields x = u v w, |v| ≥ 1, |uv|
≤ p, and u vm w in EQ for every m.

• Since |uv| ≤ p, uv consists of 0s only.
• Since |v| ≥ 1, v contains at least one 0.
• Then u v v w is supposed to be in EQ, but it isn’t.

Example 5
• L5 = EQ = { w ∈ {0,1}* | w contains the same

number of 0s and 1s} is non-regular.
• Alternative proof:

– By contradiction.
– Suppose that EQ is regular.
– Then EQ ∩ 0*1* is also regular. Why?
– Because 0*1* is regular, and the class of regular

languages is closed under intersection.
– But EQ ∩ 0*1* = { 0n1n | n ≥ 0 } = L1, which we have

already proved is non-regular.
– Contradiction.

Example 6
• A non-regular unary language, Σ = { 1 }.
• L6 = { 1n | n is a prime number } is non-regular.
• Suppose L6 is regular, p = number of states in accepting

DFA.
• Let n ≥ p be a prime number, choose x = 1n.
• The Pumping Lemma yields x = u v w, |v| ≥ 1, and u vm w

in L6 for every m.
• So we have x = 1n = 1a 1b 1c, where u = 1a, v = 1b, w = 1c.
• Since u vm w in L6 for every m, we have that every number

of the form n + k b is prime, for every nonnegative integer
k.

• But that can’t be true:
– Consider k = n.
– Then n + k b = n + n b = n (1+b), which is not prime (since b ≥ 1).

Example 7: Pumping down
• L7 = { 0i 1j | i > j } is non-regular.
• It doesn’t work to pump up within the initial block

of 0s---wouldn’t produce something outside L7.
• But we can pump down, if we choose the right x.
• Choose x = 0p+1 1p, obviously in L7.
• Then x = u v w, |v| ≥ 1, |uv| ≤ p, and every u vm w,

for any m ≥ 0, is in L7.
• Considering m = 0, we know that u w is in L7.
• v consists of just 0s, and contains at least one 0.
• So removing v removes at least one 0, which

yields a string that is not in L7.

Algorithms that Answer Questions
about FAs

Answering questions about FAs
• We can ask general questions about DFAs, NFAs, and

regular expressions and try to answer them algorithmically,
that is, by procedures that could be programmed in some
ordinary programming language.

• Represent the DFAs, etc., by strings in some standard
way, e.g., tuples with some encoding of a transition table.

• Sample questions:
– Acceptance: Does a given DFA M accept a given input string w?
– Nonemptiness: Does DFA M accept any strings at all?
– Totality: Does M accept all strings?
– Nonempty intersection: Do L(M1) and L(M2) have any string in

common?
– Subset: Is L(M1) a subset of L(M2)?
– Equivalence: Is L(M1) = L(M2)?
– Finiteness: Is L(M) a finite set?
– Optimality: Does M have the smallest number of states for a DFA

that recognizes L(M)?

Acceptance problem
• Does a given DFA M accept a given input string w?

• Need representation for w as well as M, since
DFAs have different input alphabets, whereas the
program has a fixed alphabet.

• Algorithm:
– Emulate M on w to see if it ends up at an accepting

state.
– Do the emulation using table lookup for each step.

Acceptance
algorithm

Representation of M

Representation of w

Yes/no

Nonemptiness problem
• Does DFA M accept any strings at all?
• That is, is L(M) ≠ ∅?

• Note that L(M) ≠ ∅ if and only if there is a path from the
start state q0 to an accepting state.

• Algorithm 1:
– Search the DFA digraph from q0, using some standard search

method like BFS or DFS, until you stop finding new states.
– See if any accepting state has been reached.

• Algorithm 2:
– If M accepts anything, it accepts some string of length < n, where n

is the number of states. Try all these strings.

Nonemptiness
algorithm

Representation of M Yes/no

Nonemptiness problem
• Does DFA M accept any strings at all?
• That is, is L(M) ≠ ∅?

• Algorithm 2:
– If M accepts anything, it accepts some string of length < n, where n

is the number of states. Try all these strings.
• But why is it true that, if M accepts anything, then it accepts

some string of length < n?
– Otherwise consider the shortest w accepted; must have |w| ≥ n.
– Then the states encountered in processing w must repeat

somewhere, by Pigeonhole Principle.
– Short-circuit the intervening segment and get a shorted accepted

word, contradicting the assumption that w is shortest.

Nonemptiness
algorithm

Representation of M Yes/no

Totality problem
• Does M accept all strings?
• That is, is L(M) = Σ* ?

• We can’t try all strings…
• Note that L(M) = Σ* if and only if there is no path from the

start state q0 to a nonaccepting state.
• Algorithm 1:

– Search to see if there is a path to a nonaccepting state and give the
opposite answer.

• Algorithm 2:
– Transform M into a machine M′ with L(M′) = (L(M))c.
– Ask if L(M′) is nonempty, and give the opposite answer.

Accepts
everything?

Representation of M Yes/no

Totality problem
• Does M accept all strings?
• That is, is L(M) = Σ* ?

• Algorithm 2:
– Transform M into a machine M′ with L(M′) = (L(M))c.
– Ask if L(M′) is nonempty, and give the opposite answer.
– Both steps can be done with programs.

Accepts
everything?

Representation of M Yes/no

Complement
algorithm

Rep of M Yes/noRep of M′ Nonemptiness
algorithm Negate

Yes/no

Nonempty intersection problem
• Do L(M1) and L(M2) have any string in common?
• That is, is L(M1) ∩ L(M2) ≠ ∅ ?

• Algorithm:
– Get a DFA M3 (algorithmically) that recognizes L(M1) ∩

L(M2).
– Ask if L(M3) is nonempty and give the same answer.

Nonempty
Intersection
algorithm

Rep of M1

Rep of M2

Yes/no

Subset problem
• Is L(M1) ⊆ L(M2) ?
• Note that L(M1) ⊆ L(M2) if and only if L(M1) ∩ (L(M2))c = ∅.

• Algorithm:
– Get a DFA M3 (algorithmically) that recognizes (L(M2))c.
– Get another DFA M4 (algorithmically) that recognizes L(M1) ∩

(L(M2))c.
– Ask if L(M4) is empty and give the same answer.

Subset
algorithm

Rep of M1

Rep of M2

Yes/no

Equivalence problem
• Is L(M1) = L(M2) ?
• Note that L(M1) = L(M2) if and only if both L(M1) ⊆

L(M2) and L(M2) ⊆ L(M1).

• Algorithm:
– Test whether L(M1) ⊆ L(M2) (algorithmically).
– Test whether L(M2) ⊆ L(M1) (algorithmically).
– Say yes iff both say yes.

Finiteness problem
• Is L(M) a finite set?
• Can’t try all words…
• As for the nonemptiness test, we would like to find

a limited range of lengths to test for membership,
sufficient to answer the question.

• Pumping Lemma is useful here!
• Claim 1: If M accepts even one string of length ≥

n (the number of states), then L(M) is infinite.
– Because we can pump up that string repeatedly.

• But we can’t try all strings of length ≥ n…???
• Claim 2: If L(M) is infinite, then M accepts at least

one string x with n ≤ |x| < 2n.
• With these claims, we have an easy algorithm:

Finiteness problem
• Is L(M) a finite set?
• Claim 1: If M accepts even one string of length ≥

n (the number of states), then L(M) is infinite.
• Claim 2: If L(M) is infinite, then M accepts at least

one string x with n ≤ |x| < 2n.
• Algorithm (assuming Claims 1 and 2):

– Try all strings of lengths n,…,2n-1.
– If any are in L(M), then L(M) is infinite.

• By Claim 1.
– If none are in L(M), then L(M) is finite.

• By Claim 2.

Finiteness problem
• Claim 2: If L(M) is infinite, then M accepts at least one

string x with n ≤ | x | < 2n.
• Proof of Claim 2:

– Since L(M) is infinite, it includes a string of length ≥ 2n.
– Choose one, x, of minimum length ≥ 2n.
– Apply the Pumping Lemma to x, writing x = u v w with

| u v | ≤ n and | v | ≥ 1.
– Pumping down, we know that u w is in L(M).
– Show that n ≤ | u w | < 2n:

• | u w | ≥ n:
– Because | u v w| = | x | ≥ 2n, and | v | ≤ | u v | ≤ n.

• | u w | < 2n:
– Suppose not, so | u w | ≥ 2n.
– Impossible because u w is shorter than x and x was chosen

to be a minimum length string in L(M) with length ≥ 2n.

Optimality problem
• Does M have the smallest number of states for a DFA that

recognizes L(M)?
• Algorithm 1:

– Enumerate all DFAs (up to isomorphism) with fewer states than M
and test all for equivalence with M.

– How to enumerate:
• Use canonical state names q0, q1, q2,…
• For each fixed number n of states, where n < number of states of M,

list all machines with states q0,…,qn-1.
• List these by considering all possible collections of arrows, all choices

of accept states.
• Details LTTR.

• Algorithm 2:
– Apply a state minimization algorithm for DFAs to M (see Sipser,

Exercise 7.40).
– Merges states of M, as far as possible, while maintaining

equivalence.
– Can prove that such an approach in fact yields the minimum

number of states.

Questions about NFAs
• Sample questions:

– Acceptance: Does a given NFA M accept a given input
string w?

– Nonemptiness: Does NFA M accept any strings at all?
– Totality: Does M accept all strings?
– Nonempty intersection: Do L(M1) and L(M2) have any

string in common?
– Subset: Is L(M1) a subset of L(M2)?
– Equivalence: Is L(M1) = L(M2)?
– Finiteness: Is L(M) a finite set?
– Optimality: Does M have the smallest number of states

for an NFA that recognizes L(M)?
• Can answer all but the last simply by translating to

DFAs and answering the same question.
• Optimality: List and test equivalence.

Questions about regular
expressions

• Sample questions:
– Acceptance: Does the language denoted by a given

regular expression R include a given input string w?
– Nonemptiness: Is L(R) ≠ ∅ ?
– Totality: Is L(R) = Σ*?
– Nonempty intersection: Is L(R1) ∩ L(R2) ≠ ∅ ?
– Subset: Is L(R1) ⊆ L(R2)?
– Equivalence: Is L(R1) = L(R2)?
– Finiteness: Is L(R) a finite set?
– Optimality: Is R the shortest regular expression whose

language is L(R)?
• Can answer all but the last simply by translating to

DFAs and answering the same question.
• Optimality: List and test equivalence.

Next time…

• Computability theory
• Readings:

– Sipser Chapter 3
– The Nature of Computation, Chapter 8
– GITCS notes, lecture 4

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Existence of Non-Regular Languages
	Existence of non-regular languages
	Existence of non-regular languages
	Claim 1
	Claim 1
	Claim 1
	Claim 1
	Claim 2
	Showing specific languages are non-regular�
	Showing languages are non-regular
	Showing languages are non-regular
	Showing languages are non-regular
	Showing languages are non-regular
	Showing languages are non-regular
	The Pumping Lemma
	Pumping Lemma
	Pumping Lemma
	Pumping Lemma
	The loop
	Getting the extra condition
	Example 1, revisited
	Example 3, revisited
	Example 3, revisited
	Example 3, revisited
	More Examples
	Example 4: Palindromes
	Example 5
	Example 5
	Example 6
	Example 7: Pumping down
	Algorithms that Answer Questions about FAs
	Answering questions about FAs
	Acceptance problem
	Nonemptiness problem
	Nonemptiness problem
	Totality problem
	Totality problem
	Nonempty intersection problem
	Subset problem
	Equivalence problem
	Finiteness problem
	Finiteness problem
	Finiteness problem
	Optimality problem
	Questions about NFAs
	Questions about regular expressions
	Next time…

