
6.045: Automata, Computability, and

Complexity

Or, Great Ideas in Theoretical

Computer Science

Spring, 2010

Class 4

Nancy Lynch

Today

•	 Two more models of computation:

–	 Nondeterministic Finite Automata (NFAs)
•	 Add a guessing capability to FAs.
•	 But provably equivalent to FAs.

–	 Regular expressions

•	 A different sort of model---expressions rather than machines.
•	 Also provably equivalent.

• Topics:
–	 Nondeterministic Finite Automata and the languages they

recognize

– NFAs vs. FAs

–	 Closure of FA-recognizable languages under various operations,

revisited
–	 Regular expressions
–	 Regular expressions denote FA-recognizable languages

•	 Reading: Sipser, Sections 1.2, 1.3
• Next: Section 1.4

Nondeterministic Finite Automata

and the languages they

recognize

Nondeterministic Finite Automata

•	 Generalize FAs by adding nondeterminism, allowing

several alternative computations on the same input string.
•	 Ordinary deterministic FAs follow one path on each input.

• Two changes:

– Allow δ(q, a) to specify more than one successor state:
a

a
q

– Add ε-transitions, transitions made “for free”, without “consuming”
any input symbols.

ε

•	 Formally, combine these changes:
q1 q2

Formal Definition of an NFA

• An NFA is a 5-tuple (Q, Σ, δ, q0, F), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,

The arguments The result is a set of states.

are a state and either

an alphabet symbol or

ε. Σε means Σ ∪ {ε }.

– q0 ∈ Q, is the start state, and

– F ⊆ Q is the set of accepting, or final states.

Formal Definition of an NFA

•	 An NFA is a 5-tuple (Q, Σ, δ, q0, F), where:

– Q is a finite set of states,
– Σ is a finite set (alphabet) of input symbols,
– δ: Q × Σε → P(Q) is the transition function,

– q0 ∈ Q, is the start state, and

– F ⊆ Q is the set of accepting, or final states.

•	 How many states in P(Q)?

2|Q|

•	 Example: Q = { a, b, c }
P(Q) = { ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} }

NFA Example 1

a b c

0,1

0 1

Q = { a, b, c }
Σ = { 0, 1 }

0 1 εq0 = a
F = { c } a {a,b} {a} ∅
δ: b ∅ {c} ∅

c ∅ ∅ ∅

c

NFA Example 2

b c0,1 d
0 1

e f g
1 0

a

ε

ε

0 1 ε
a {a} {a} {b,c}
b {c} ∅ ∅

∅ {d} ∅

d ∅ ∅ ∅

e ∅ {f} ∅

f {g} ∅ ∅

g ∅ ∅ ∅

Nondeterministic Finite Automata

•	 NFAs are like DFAs with two additions:
– Allow δ(q, a) to specify more than one successor state.
– Add ε-transitions.

•	 Formally, an NFA is a 5-tuple (Q, Σ, δ, q0, F),
where:

–	 Q is a finite set of states,

– Σ	is a finite set (alphabet) of input symbols,

–	 δ: Q × Σε → P(Q) is the transition function,

Σε means Σ ∪ {ε }.

– q0 ∈ Q, is the start state, and

– F ⊆ Q is the set of accepting, or final states.

NFA Examples
Example 1:

a b

0,1

c
0 1

Example 2:

b c0,1 d
0 1

e f g
1 0

a

ε

ε

How NFAs compute

• Informally:
– Follow allowed arrows in any possible way,

while “consuming” the designated input
symbols.

– Optionally follow any ε arrow at any time,
without consuming any input.

– Accepts a string if some allowed sequence of
transitions on that string leads to an accepting
state.

Example 1

a b

0,1

c
0 1

• L(M) = { w | w ends with 01 }
• M accepts exactly the strings in this set.
• Computations for input word w = 101:

– Input word w: 1 0 1

– States: a a a a
– Or: a a b c

• Since c is an accepting state, M accepts 101

Example 1

a b

0,1

c
0 1

•	 Computations for input word w = 0010:
–	 Possible states after 0: { a, b }
–	 Then after another 0: { a, b }
–	 After 1: { a, c }
–	 After final 0: { a, b }

•	 Since neither a nor b is accepting, M does not
accept 0010.

0 	 0 0
{ a } Æ { a, b } Æ { a, b } Æ { a, c } Æ { a, b }1

Example 2

b c0,1 d

0 1

e f g
1 0

a

ε

ε

• L(M) = { w | w ends with 01 or 10 }
• Computations for w = 0010:

– Possible states after no input: { a, b, e }
– After 0: { a, b, e, c }
– After 0: { a, b, e, c }
– After 1: { a, b, e, d, f }
– After 0: { a, b, e, c, g }

• Since g is accepting, M accepts 0010.

0 0 1 0

{ a, b, e } Æ { a, b, e, c } Æ { a, b, e, c} Æ { a, b, e, d, f } Æ { a, b, e, c, g }

Example 2

b c0,1 d

0 1

e f g
1 0

a

ε

ε

•	 Computations for w = 0010:
0 0

{ a, b, e } Æ { a, b, e, c } Æ { a, b, e, c }
1 0
Æ { a, b, e, d, f } Æ { a, b, e, c, g }

• Path to accepting state:
0 0 ε 1 0

a Æ a Æ a Æ e Æ f Æ g

Viewing computations as a tree

Input w = 01b c0,
1

d0 1

e f g1 0

a
ε

ε

a

ba e

c

dfeb

eba

0

1

1

0

1

ε

ε ε

ε

ε
ε

Done,
accept

Stuck: No
moves on ε
or 0

Stuck: No
moves on ε
or 1

In general, accept if
there is a path labeled
by the entire input
string, possibly
interspersed with εs,
leading to an
accepting state.

Here, leads to accepting
state d.

Formal definition of computation

•	 Define E(q) = set of states reachable from q using zero or

more ε-moves (includes q itself).
• Example 2: E(a) = { a, b, e }

•	 Define δ*: Q × Σ* → P(Q), state and string yield a set of
states: δ*(q, w) = states that can be reached from q by
following w.

•	 Defined iteratively: Compute δ*(q, a1 a2 … ak) by:
S : = E(q)

for i = 1 to k do

S := ∪r′ ∈ δ(r, ai) for some r in S E(r′)

•	 Or define recursively, LTTR.

Formal definition of computation

•	 δ*(q, w) = states that can be reached from

q by following w.
•	 String w is accepted if δ*(q0, w) ∩ F ≠ ∅ ,

that is, at least one of the possible end
states is accepting.

•	 String w is rejected if it isn’t accepted.
•	 L(M), the language recognized by NFA M, =

{ w | w is accepted by M}.

NFAs vs. FAs

NFAs vs. DFAs

• DFA = Deterministic Finite Automaton, new name for

ordinary Finite Automata (FA).

–	 To emphasize the difference from NFAs.

•	 What languages are recognized by NFAs?
•	 Since DFAs are special cases of NFAs, NFAs recognize at

least the DFA-recognizable (regular) languages.
•	 Nothing else!
•	 Theorem: If M is an NFA then L(M) is DFA-recognizable.
• Proof:

–	 Given NFA M1 = (Q1, Σ, δ1, q01, F1), produce an equivalent DFA M2
= (Q2, Σ, δ2, q02, F2).

•	 Equivalent means they recognize the same language, L(M2) =
L(M1).

–	 Each state of M2 represents a set of states of M1: Q2 = P(Q1).
–	 Start state of M2 is E(start state of M1) = all states M1 could be in

after scanning ε: q02 = E(q01).

NFAs vs. DFAs

•	 Theorem: If M is an NFA then L(M) is DFA-

recognizable.
• Proof:

– Given NFA M1 = (Q1, Σ, δ1, q01, F1), produce an

equivalent DFA M2 = (Q2, Σ, δ2, q02, F2).

– Q2 = P(Q1)

– q02 = E(q01)

– F2 = { S ⊆ Q1 | S ∩ F1 ≠ ∅ }

•	 Accepting states of M2 are the sets that contain an accepting
state of M1.

–	 δ2(S, a) = ∪r ∈ S E(δ1(r, a))
•	 Starting from states in S, δ2(S, a) gives all states M1 could reach

after a and possibly some ε-transitions.
– M2 recognizes L(M1): At any point in processing the

string, the state of M2 represents exactly the set of states
that M1 could be in.

Example: NFA Æ DFA

• M1: 	

a b c

0,1

0	 1

•	 States of M2: ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c},
{a,b,c}

•	 Other 5 subsets aren’t reachable from start state,
don’t bother drawing them.

• δ2:
{a} {a,b}

1

{a,c}
0 1

0

0

1

F2

NFAs vs. DFAs

• NFAs and DFAs have the same power.
• But sometimes NFAs are simpler than equivalent DFAs.

• Example: L = strings ending in 01 or 10

– Simple NFA, harder DFA (LTTR)
• Example: L = strings having substring 101

0,1
– Recall DFA:

– NFA:
1 0 1a cb d

0

0 1

0,10,1

1 0 1

– Simpler---has the power to “guess” when to start matching.

NFAs vs. DFAs

•	 Which brings us back to last time.
•	 We got stuck in the proof of closure for DFA

languages under concatenation:
•	 Example: L = { 0, 1 }* { 0 } { 0 }*

0,1 0

0

• NFA can guess when the critical 0 occurs.

Closure of regular (FA
-

recognizable) languages under

various operations, revisited

Closure under operations

•	 The last example suggests we retry proofs of

closure of FA languages under concatenation and
star, this time using NFAs.

•	 OK since they have the same expressive power
(recognize the same languages) as DFAs.

•	 We already proved closure under common set-
theoretic operations---union, intersection,
complement, difference---using DFAs.

•	 Got stuck on concatenation and star.

•	 First (warmup): Redo union proof in terms of
NFAs.

Closure under union

•	 Theorem: FA-recognizable languages are closed

under union.
•	 Old Proof:

–	 Start with DFAs M1 and M2 for the same alphabet Σ.
–	 Get another DFA, M3, with L(M3) = L(M1) ∪ L(M2).
– Idea: Run M1 and M2 “in parallel” on the same input. If

either reaches an accepting state, accept.

Closure under union
• Example:

0
M1: Substring 01

1

M2: Odd number of 1s

a b c

1 0 0,1

1
d e

1

0 0

M3:
� 1 1

11
1

1
0

0

0

ad bd cd

ae be ce

0
0

0

Closure under union, general rule
•	 Assume:

– M1 = (Q1, Σ, δ1, q01, F1)
– M2 = (Q2, Σ, δ2, q02, F2)

•	 Define M3 = (Q3, Σ, δ3, q03, F3), where
– Q3 = Q1 × Q2

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 }
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a))
– q03 = (q01, q02)

– F3 = { (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }

Closure under union

•	 Theorem: FA-recognizable languages are closed

under union.
•	 New Proof:

–	 Start with NFAs M1 and M2.

–	 Get another NFA, M3, with L(M3) = L(M1) ∪ L(M2).

M1

Use final statesε
from M1 and M2.

M2
Add new ε

start state

Closure under union

•	 Theorem: FA-recognizable languages are
closed under union.

•	 New Proof: Simpler!

•	 Intersection:
– NFAs don’t seem to help.

•	 Concatenation, star:
– Now try NFA-based constructions.

Closure under concatenation

• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 }
•	 Theorem: FA-recognizable languages are closed

under concatenation.
• Proof:

–	 Start with NFAs M1 and M2.

–	 Get another NFA, M3, with L(M3) = L(M1) ◦ L(M2).

M1 M2
ε

ε

These are no longer
final states.

These are still

final states.

Closure under concatenation

• Example:
– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}*.

– L1 L2 = strings that end with a block of at least

one 0

– M1:

– M2:

– Now combine:

0,1

0
0

NFAs

0,1
0

0
ε

Closure under star

• 	L* = { x | x = y1 y2 … yk for some k ≥ 0, every y in L }

= L0 ∪ L1 ∪ L2 ∪ …
•	 Theorem: FA-recognizable languages are closed under

star.
• Proof:

–	 Start with FA M1.

–	 Get an NFA, M2, with L(M2) = L(M1)*.

Use final states
from M1 and M2.

M1
ε

Add new start
state; it’s also

ε

ε

a final state,
since ε is in
L(M1)*.

Closure under star

• Example:

– Σ = { 0, 1}, L1 = { 01, 10 }

– (L1)* = even-length strings where each pair

consists of a 0 and a 1.
– M1: ε

0 1

ε
1 0

– Construct M2:
ε

ε

ε

0 1

1 0

ε

ε

Closure, summary

•	 FA-recognizable (regular) languages are

closed under set operations, concatenation,
and star.

•	 Regular operations: Union, concatenation,
and star.

•	 Can be used to build regular expressions,
which denote languages.

• E.g., regular expression (0 ∪ 1)* 0 0*

denotes the language { 0, 1 }* {0} {0}*

•	 Study these next…

Regular Expressions

Regular expressions

•	 An algebraic-expression notation for describing (some)

languages, rather than a machine representation.
•	 Languages described by regular expressions are exactly

the FA-recognizable languages.
– That’s why FA-recognizable languages are called “regular”.

•	 Definition: R is a regular expression over alphabet Σ
exactly if R is one of the following:

–	 a, for some a in Σ,

–	 ε,

– ∅,

– (R1 ∪ R2), where R1 and R2 are smaller regular expressions,

– (R1 ° R2), where R1 and R2 are smaller regular expressions, or

– (R1*), where R1 is a smaller regular expression.

•	 A recursive definition.

Regular expressions

•	 Definition: R is a regular expression over alphabet Σ

exactly if R is one of the following:

–	 a, for some a in Σ,

–	 ε,

– ∅,

– (R1 ∪ R2), where R1 and R2 are smaller regular expressions,

– (R1 ° R2), where R1 and R2 are smaller regular expressions, or

– (R1*), where R1 is a smaller regular expression.

•	 These are just formal expressions---we haven’t said yet
what they “mean”.

•	 Example: (((0 ∪ 1) ° ε)* ∪ 0)
•	 Abbreviations:

–	 Sometimes omit °, use juxtaposition.
–	 Sometimes omit parens, use precedence of operations: * highest,

then °, then ∪ .
•	 Example: Abbreviate above as ((0 ∪ 1) ε)* ∪ 0
•	 Example: (0 ∪ 1)* 111 (0 ∪ 1)*

How regular expressions

denote languages

•	 Define the languages recursively, based on the
expression structure:

•	 Definition:
– L(a) = { a }; one string, with one symbol a.

– L(ε) = { ε }; one string, with no symbols.

– L(∅) = ∅; no strings.

– L(R1 ∪ R2) = L(R1) ∪ L(R2)

– L(R1 ° R2) = L(R1) ° L(R2)

– L(R1*) = (L(R1))*

• 	Example: Expression ((0 ∪ 1) ε)* ∪ 0 denotes

language { 0, 1 }* ∪ { 0 } = { 0, 1 }*, all strings.

•	 Example: (0 ∪ 1)* 111 (0 ∪ 1)* denotes { 0, 1 }*

{ 111 } { 0, 1 }*, all strings with substring 111.

More examples

• Definition:

– L(a) = { a }; one string, with one symbol a.

– L(ε) = { ε }; one string, with no symbols.

– L(∅) = ∅; no strings.

– L(R1 ∪ R2) = L(R1) ∪ L(R2)

– L(R1 ° R2) = L(R1) ° L(R2)

– L(R1*) = (L(R1))*

•	 Example: L = strings over { 0, 1 } with odd number of 1s.
0* 1 0* (0* 1 0* 1 0*)*

•	 Example: L = strings with substring 01 or 10.
(0 ∪ 1)* 01 (0 ∪ 1)* ∪ (0 ∪ 1)* 10 (0 ∪ 1)*

Abbreviate (writing Σ for (0 ∪ 1)):

Σ* 01 Σ* ∪ Σ* 10 Σ*

More examples

•	 Example: L = strings with substring 01 or 10.

(0 ∪ 1)* 01 (0 ∪ 1)* ∪ (0 ∪ 1)* 10 (0 ∪ 1)*
Abbreviate:

Σ* 01 Σ* ∪ Σ* 10 Σ*

•	 Example: L = strings with neither substring 01 or

10.

–	 Can’t write complement.

–	 But can write: 0* ∪ 1*.

•	 Example: L = strings with no more than two
consecutive 0s or two consecutive 1s
– Would be easy if we could write complement.
(ε ∪ 1 ∪ 11) ((0 ∪ 00) (1 ∪ 11))* (ε ∪ 0 ∪ 00)

–	 Alternate one or two of each.

More examples

•	 Regular expressions commonly used to specify

syntax.
– For (portions of) programming languages

– Editors

–	 Command languages like UNIX shell

•	 Example: Decimal numbers

D D* . D* ∪ D* . D D*,
where D is the alphabet { 0, …, 9 }

Need a digit either before or after the decimal point.

Regular Expressions Denote

FA-Recognizable Languages

Languages denoted by regular

expressions

•	 The languages denoted by regular expressions
are exactly the regular (FA-recognizable)
languages.

•	 Theorem 1: If R is a regular expression, then L(R)
is a regular language (recognized by a FA).

• Proof: Easy.
•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R).
• Proof: Harder, more technical.

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• Proof:

–	 For each R, define an NFA M with L(M) = L(R).
–	 Proceed by induction on the structure of R:

•	 Show for the three base cases.
•	 Show how to construct NFAs for more complex expressions

from NFAs for their subexpressions.

–	 Case 1: R = a
•	 L(R) = { a } Accepts only a.

a

–	 Case 2: R = ε
• L(R) = { ε } ε.

Accepts only

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• Proof:

–	 Case 3: R = ∅

• L(R) = ∅ Accepts nothing.

–	 Case 4: R = R1 ∪ R2
• M1 recognizes L(R1), 	 M1

• M2 recognizes L(R2). ε

•	 Same construction

we used to show

regular languages
 M2

are closed under ε

union.

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• 	Proof:

–	 Case 5: R = R1 ° R2
• M1 recognizes L(R1),
• M2 recognizes L(R2).

•	 Same construction we used to show regular languages are
closed under concatenation.

M1 M2
ε

ε

ε

ε

Theorem 1

•	 Theorem 1: If R is a regular expression, then L(R)

is a regular language (recognized by a FA).
• 	Proof:

–	 Case 6: R = (R1)*
• M1 recognizes L(R1),

•	 Same construction we used to show regular languages are
closed under star.

M1
ε

Example for Theorem 1
• L = ab ∪ a*
• Construct machines recursively:
• a: a b: b

• ab: a bε

ε

ε a
• a*:

a ε b

ε

ε

a• ab ∪ a*: ε ε

Theorem 2

•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R).
• Proof:

– For each NFA M, define a regular expression R with

L(R) = L(M).

–	 Show with an example:

b
x y z

b a a

a	 b

– Convert to a special form with only one final state, no
incoming arrows to start state, no outgoing arrows from
final state.

b
x y z qfq0

b a a
ε a b ε

Theorem 2

b
xq0 y z qf

b a a
ε a b ε

•	 Now remove states one at a time (any order), replacing
labels of edges with more complicated regular expressions.

•	 First remove z:

b
x y qfq0

b a
ε a b a*

•	 New label b a* describes all strings that can move the
machine from state y to state qf, visiting (just) z any
number of times.

Theorem 2

b
x yq0 qf

b a
ε a b a*

•	 Then remove x: a ∪ bb* a
b a*b*a

yq0 qf

•	 New label b*a describes all strings that can move the
machine from q0 to y, visiting (just) x any number of times.

• New label a ∪ bb* a describes all strings that can move the

machine from y to y, visiting (just) x any number of times.

Theorem 2

yq0 qf

a ∪ bb* a
b*a b a*

•	 Finally, remove y:

b*a (a ∪ bb* a)* b a*
q0 qf

•	 New label describes all strings that can move the machine
from q0 to qf, visiting (just) y any number of times.

•	 This final label is the needed regular expression.

Theorem 2

•	 Define a generalized NFA (gNFA).

–	 Same as NFA, but:
•	 Only one accept state, ≠ start state.
•	 Start state has no incoming arrows, accept state no outgoing arrows.
•	 Arrows are labeled with regular expressions.

–	 How it computes: Follow an arrow labeled with a regular

expression R while consuming a block of input that is a word in the
language L(R).

•	 Convert the original NFA M to a gNFA.
•	 Successively transform the gNFA to equivalent gNFAs

(recognize same language), each time removing one state.
•	 When we have 2 states and one arrow, the regular

expression R on the arrow is the final answer:

R

q0 qf

we get:

Theorem 2

•	 To remove a state x, consider every pair of other states, y

and z, including y = z.
•	 New label for edge (y, z) is the union of two expressions:

–	 What was there before, and
–	 One for paths through (just) x.

y	

x

z

y x

R
R ∪ SU*T• If y ≠ z:
 we get:
 y z

S T

U

R U R ∪ SU*T
S •	 If y = z: y

T

Next time…

•	 Existence of non-regular languages
•	 Showing specific languages aren’t regular
•	 The Pumping Lemma
•	 Algorithms that answer questions about

FAs.

•	 Reading: Sipser, Section 1.4; some pieces
from 4.1

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	6.045: Automata, Computability, and Complexity�Or, Great Ideas in Theoretical Computer Science �Spring, 2010
	Today
	Nondeterministic Finite Automata and the languages they recognize�
	Nondeterministic Finite Automata
	Formal Definition of an NFA
	Formal Definition of an NFA
	NFA Example 1
	NFA Example 2
	How NFAs compute
	Example 1
	Example 1
	Example 2
	Example 2
	Viewing computations as a tree
	Formal definition of computation
	Formal definition of computation
	NFAs vs. FAs�
	NFAs vs. DFAs
	NFAs vs. DFAs
	Example: NFA  DFA
	NFAs vs. DFAs
	NFAs vs. DFAs
	Closure of regular (FA-recognizable) languages under various operations, revisited
	Closure under operations
	Closure under union
	Closure under union, general rule
	Closure under union
	Closure under union
	Closure under concatenation
	Closure under concatenation
	Closure under star
	Closure under star
	Closure, summary
	Regular Expressions�
	Regular expressions
	Regular expressions
	How regular expressions denote languages
	More examples
	More examples
	More examples
	Regular Expressions Denote FA-Recognizable Languages�
	Languages denoted by regular expressions
	Theorem 1
	Theorem 1
	Theorem 1
	Theorem 1
	Example for Theorem 1
	Theorem 2
	Theorem 2
	Theorem 2
	Theorem 2
	Theorem 2
	Theorem 2
	Next time…

