
6.045: Automata, Computability, and 
 
Complexity
 

Or, Great Ideas in Theoretical 
 
Computer Science 
 

Spring, 2010
 

Class 4
 
Nancy Lynch
 



Today
 
•	 Two more models of computation: 

–	 Nondeterministic Finite Automata (NFAs) 
•	 Add a guessing capability to FAs. 
•	 But provably equivalent to FAs. 


–	 Regular expressions 

•	 A different sort of model---expressions rather than machines. 
•	 Also provably equivalent. 

•  Topics:  
–	 Nondeterministic Finite Automata and the languages they 

recognize
 
– NFAs  vs. FAs  
  
–	 Closure of FA-recognizable languages under various operations, 

revisited 
–	 Regular expressions 
–	 Regular expressions denote FA-recognizable languages 

•	 Reading: Sipser, Sections 1.2, 1.3 
•  Next:  Section 1.4 



Nondeterministic Finite Automata 
 
and the languages they 
 

recognize
 



Nondeterministic Finite Automata
 
•	 Generalize FAs by adding nondeterminism, allowing

several alternative computations on the same input string. 
•	 Ordinary deterministic FAs follow one path on each input.
 
• Two changes: 

– Allow  δ(q, a) to specify more than one successor state: 
a 

a 
q 

– Add  ε-transitions, transitions made “for free”, without “consuming”
any input symbols. 

ε 

•	 Formally, combine these changes: 
q1 q2 



Formal Definition of an NFA
 

• An NFA is a 5-tuple ( Q, Σ, δ, q0, F ), where:
 
– Q is a finite set of states, 
– Σ is a finite set (alphabet) of input symbols, 
– δ: Q × Σε → P(Q) is the transition function, 

The arguments The result is a set of states.
 
are a state and either 
 
an alphabet symbol or 
 
ε. Σε means Σ ∪ {ε }.
 

– q0 ∈ Q, is the start state, and
 

– F  ⊆ Q is the set of accepting, or final states.
 



Formal Definition of an NFA
 

•	 An NFA is a 5-tuple ( Q, Σ, δ, q0, F ), where:
 
– Q is a finite set of states, 
– Σ is a finite set (alphabet) of input symbols, 
– δ: Q × Σε → P(Q) is the transition function,
 
– q0 ∈ Q, is the start state, and
 

– F  ⊆ Q is the set of accepting, or final states.
 
•	 How many states in P(Q)? 

2|Q| 

•	 Example: Q = { a, b, c } 
P(Q) = { ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c} } 



NFA Example 1 

a b c

0,1 

0 1 

Q = { a, b, c } 
Σ = { 0, 1 } 

0 1 εq0 = a 
F = { c } a {a,b} {a} ∅ 
δ: b ∅ {c} ∅ 

c ∅ ∅ ∅ 



c        

NFA Example 2
 

b c0,1 d
0 1 

e f g 
1 0 

a 

ε 

ε 

0 1 ε 
a {a} {a} {b,c} 
b {c} ∅ ∅ 

∅ {d} ∅ 

d ∅ ∅ ∅ 

e ∅ {f} ∅ 

f {g} ∅ ∅ 

g ∅ ∅ ∅ 



Nondeterministic Finite Automata
 

•	 NFAs are like DFAs with two additions: 
– Allow  δ(q, a) to specify more than one successor state. 
– Add  ε-transitions. 

•	 Formally, an NFA is a 5-tuple ( Q, Σ, δ, q0, F ), 
where: 

–	 Q is a finite set of states, 

– Σ	is a finite set (alphabet) of input symbols, 

–	 δ: Q × Σε → P(Q) is the transition function, 


Σε means Σ ∪ {ε }.
 

– q0 ∈ Q, is the start state, and
 

– F  ⊆ Q is the set of accepting, or final states.
 



NFA Examples 
Example 1: 

a b 

0,1 

c 
0 1 

Example 2:
 

b c0,1 d
0 1 

e f g 
1 0 

a 

ε 

ε 



How NFAs compute
 

• Informally: 
– Follow allowed arrows in any possible way, 

while “consuming” the designated input 
symbols. 

– Optionally follow any ε arrow at any time, 
without consuming any input. 

– Accepts a string if some allowed sequence of 
transitions on that string leads to an accepting 
state. 



Example 1
 

a b 

0,1 

c 
0 1 

• L(M) = { w | w ends with 01 } 
• M accepts exactly the strings in this set. 
• Computations for input word w = 101: 

– Input word w: 1 0 1 
 
– States:  a a a a 
– Or:  a a b c 

• Since c is an accepting state, M accepts 101
 



Example 1
 

a b 

0,1 

c 
0 1 

•	 Computations for input word w = 0010: 
–	 Possible states after 0:  { a, b } 
–	 Then after another 0:  { a, b } 
–	 After 1: { a, c } 
–	 After final 0:  { a, b } 

•	 Since neither a nor b is accepting, M does not 
accept 0010. 

0 	 0 0 
{ a } Æ { a, b } Æ { a, b } Æ { a, c } Æ { a, b }1 



Example 2
 
b c0,1 d

0 1 

e f g 
1 0 

a 

ε 

ε 

• L(M) = { w | w ends with 01 or 10 } 
• Computations for w = 0010: 

– Possible states after no input:  { a, b, e } 
– After 0:  { a, b, e, c } 
– After 0:  { a, b, e, c } 
– After 1:  { a, b, e, d, f } 
– After 0:  { a, b, e, c, g } 

• Since g is accepting, M accepts 0010.
 
0 0 1 0
 

{ a, b, e } Æ { a, b, e, c } Æ { a, b, e, c} Æ { a, b, e, d, f } Æ { a, b, e, c, g }
 



Example 2
 
b c0,1 d

0 1 

e f g 
1 0 

a 

ε 

ε 

•	 Computations for w = 0010: 
0 0 

{ a, b, e } Æ { a, b, e, c } Æ { a, b, e, c } 
1 0 
Æ { a, b, e, d, f } Æ { a, b, e, c, g } 

• Path to accepting state: 
0 0 ε 1 0 
 

a Æ a Æ a Æ e Æ f Æ g 
 



Viewing computations as a tree
 

Input w = 01b c0, 
1 

d0 1 

e f g1 0 

a 
ε 

ε 

a 

ba e 

c 

dfeb 

eba 

0 

1 

1 

0 

1 

ε 

ε ε 

ε 

ε 
ε 

Done, 
accept 

Stuck: No 
moves on ε 
or 0 

Stuck: No 
moves on ε 
or 1 

In general, accept if 
there is a path labeled 
by the entire input 
string, possibly 
interspersed with εs, 
leading to an 
accepting state. 

Here, leads to accepting 
state d. 



Formal definition of computation
 
•	 Define E(q) = set of states reachable from q using zero or 

more ε-moves (includes q itself). 
•  Example 2:  E(a) = { a, b, e } 

•	 Define δ*: Q × Σ* → P(Q), state and string yield a set of
states: δ*( q, w ) = states that can be reached from q by 
following w. 

•	 Defined iteratively: Compute δ*( q, a1 a2 … ak) by: 
S : = E(q)
 
for i = 1 to k do 
 

S := ∪r′ ∈ δ( r, ai) for some r in S E(r′) 

•	 Or define recursively, LTTR. 



Formal definition of computation
 
•	 δ*( q, w ) = states that can be reached from

q by following w. 
•	 String w is accepted if δ*( q0, w ) ∩ F ≠ ∅ , 

that is, at least one of the possible end
states is accepting. 

•	 String w is rejected if it isn’t accepted. 
•	 L(M), the language recognized by NFA M, =

{ w | w is accepted by M}. 



NFAs vs. FAs
 



NFAs vs. DFAs
 
•  DFA  = Deterministic Finite Automaton, new name for

ordinary Finite Automata (FA). 

–	 To emphasize the difference from NFAs. 


•	 What languages are recognized by NFAs? 
•	 Since DFAs are special cases of NFAs, NFAs recognize at 

least the DFA-recognizable (regular) languages. 
•	 Nothing else! 
•	 Theorem: If M is an NFA then L(M) is DFA-recognizable. 
•  Proof:  

–	 Given NFA M1 = ( Q1, Σ, δ1, q01, F1 ), produce an equivalent DFA M2
= ( Q2, Σ, δ2, q02, F2 ). 

•	 Equivalent means they recognize the same language, L(M2) =
L(M1). 

–	 Each state of M2 represents a set of states of M1: Q2 = P(Q1). 
–	 Start state of M2 is E(start state of M1) = all states M1 could be in 

after scanning ε: q02 = E(q01). 



NFAs vs. DFAs
 
•	 Theorem: If M is an NFA then L(M) is DFA-

recognizable. 
•  Proof:  

– Given NFA M1 = ( Q1, Σ, δ1, q01, F1 ), produce an
 
equivalent DFA M2 = ( Q2, Σ, δ2, q02, F2 ).
 

– Q2 = P(Q1)
 
– q02 = E(q01)
 
– F2 = { S ⊆ Q1 | S ∩ F1 ≠ ∅ }
 

•	 Accepting states of M2 are the sets that contain an accepting
state of M1. 

–	 δ2( S, a ) = ∪r ∈ S E( δ1( r, a ) ) 
•	 Starting from states in S, δ2( S, a ) gives all states M1 could reach 

after a and possibly some ε-transitions. 
– M2 recognizes L(M1): At any point in processing the

string, the state of M2 represents exactly the set of states 
that M1 could be in. 



Example: NFA Æ DFA
 
• M1: 	 

a b c

0,1 

0	 1 

•	 States of M2: ∅, {a}, {b}, {c}, {a,b}, {a,c}, {b,c},
{a,b,c} 

•	 Other 5 subsets aren’t reachable from start state, 
don’t bother drawing them. 

• δ2: 
{a} {a,b} 

1 

{a,c}
0 1 

0 

0 

1 

F2 



NFAs vs. DFAs
 
• NFAs and DFAs have the same power. 
• But sometimes NFAs are simpler than equivalent DFAs.
 
• Example: L = strings ending in 01 or 10 

– Simple NFA, harder DFA (LTTR) 
• Example: L = strings having substring 101 

0,1
– Recall DFA:  

– NFA:  
1 0 1a cb d 

0 

0 1 

0,10,1 

1 0 1 

– Simpler---has the power to “guess” when to start matching.
 



NFAs vs. DFAs
 
•	 Which brings us back to last time. 
•	 We got stuck in the proof of closure for DFA

languages under concatenation: 
•	 Example: L = { 0, 1 }* { 0 } { 0 }* 

0,1 0 

0 

• NFA can guess when the critical 0 occurs.
 



Closure of regular (FA
-

recognizable) languages under 
 

various operations, revisited
 



Closure under operations 
 
•	 The last example suggests we retry proofs of 

closure of FA languages under concatenation and
star, this time using NFAs. 

•	 OK since they have the same expressive power 
(recognize the same languages) as DFAs. 

•	 We already proved closure under common set-
theoretic operations---union, intersection,
complement, difference---using DFAs. 

•	 Got stuck on concatenation and star. 

•	 First (warmup):  Redo union proof in terms of
NFAs. 



Closure under union
 
•	 Theorem: FA-recognizable languages are closed 

under union. 
•	 Old Proof: 

–	 Start with DFAs M1 and M2 for the same alphabet Σ. 
–	 Get another DFA, M3, with L(M3) = L(M1) ∪ L(M2). 
– Idea: Run M1 and M2 “in parallel” on the same input.  If 

either reaches an accepting state, accept. 



Closure under union
• Example: 

0
M1:  Substring 01

1

M2:  Odd number of 1s

a b c

1 0 0,1

1
d e

1

0 0

M3: 
� 1 1

11
1

1
0

0

0

ad bd cd

ae be ce

0
0

0



Closure under union, general rule 
•	 Assume: 

– M1 = ( Q1, Σ, δ1, q01, F1 ) 
– M2 = ( Q2, Σ, δ2, q02, F2 ) 

•	 Define M3 = ( Q3, Σ, δ3, q03, F3 ), where 
– Q3 = Q1 × Q2 

• Cartesian product, {(q1,q2) | q1∈Q1 and q2∈Q2 } 
– δ3 ((q1,q2), a) = (δ1(q1, a), δ2(q2, a)) 
– q03 = (q01, q02)
 
– F3 = {  (q1,q2) | q1 ∈ F1 or q2 ∈ F2 }
 



Closure under union
 
•	 Theorem: FA-recognizable languages are closed 

under union. 
•	 New Proof: 

–	 Start with NFAs M1 and M2. 

–	 Get another NFA, M3, with L(M3) = L(M1) ∪ L(M2). 


M1 

Use final statesε 
from M1 and M2. 

M2
Add new ε
 
start state
 



Closure under union
 

•	 Theorem: FA-recognizable languages are 
closed under union. 

•	 New Proof: Simpler! 

•	 Intersection: 
– NFAs don’t seem to help. 

•	 Concatenation, star: 
– Now try NFA-based constructions. 



Closure under concatenation
 
• L1 ◦ L2 = { x y | x ∈ L1 and y ∈ L2 } 
•	 Theorem: FA-recognizable languages are closed

under concatenation. 
•  Proof:  

–	 Start with NFAs M1 and M2. 

–	 Get another NFA, M3, with L(M3) = L(M1) ◦ L(M2). 


M1 M2 
ε 

ε 

These are no longer 
final states. 

These are still
 
final states.
 



Closure under concatenation
 

• Example: 
– Σ = { 0, 1}, L1 = Σ*, L2 = {0} {0}*.
 
– L1 L2 = strings that end with a block of at least 
 

one 0
 

– M1:
 

– M2: 

– Now combine: 

0,1 

0 
0 

NFAs 

0,1 
0 

0
ε 



Closure under star
 
• 	L* = { x | x = y1 y2 … yk for some k ≥ 0, every y in L } 

= L0 ∪ L1 ∪ L2 ∪ … 
•	 Theorem: FA-recognizable languages are closed under 

star. 
•  Proof:  

–	 Start with FA M1. 

–	 Get an NFA, M2, with L(M2) = L(M1)*. 


Use final states 
from M1 and M2. 

M1
ε 

Add new start 
state; it’s also 

ε 

ε 

a final state, 
since ε is in 
L(M1)*. 



Closure under star
 
• Example: 

– Σ = { 0, 1}, L1 = { 01, 10 }
 
– (L1)* = even-length strings where each pair
 

consists of a 0 and a 1. 
– M1: ε 

0 1 

ε 
1 0 

– Construct M2: 
ε 

ε 

ε 

0 1 

1 0 

ε 

ε 



Closure, summary
 
•	 FA-recognizable (regular) languages are 

closed under set operations, concatenation,
and star. 

•	 Regular operations: Union, concatenation, 
and star. 

•	 Can be used to build regular expressions, 
which denote languages. 

• E.g., regular expression ( 0 ∪ 1 )* 0 0*
 
denotes the language { 0, 1 }* {0} {0}*
 

•	 Study these next… 



Regular Expressions
 



Regular expressions
 
•	 An algebraic-expression notation for describing (some)

languages, rather than a machine representation. 
•	 Languages described by regular expressions are exactly

the FA-recognizable languages. 
– That’s why FA-recognizable languages are called “regular”. 

•	 Definition: R is a regular expression over alphabet Σ 
exactly if R is one of the following: 

–	 a, for some a in Σ, 

–	 ε, 

– ∅,
 
– ( R1 ∪ R2 ), where R1 and R2 are smaller regular expressions,
 
– ( R1 ° R2 ), where R1 and R2 are smaller regular expressions, or
 
– ( R1* ), where R1 is a smaller regular expression.
 

•	 A recursive definition. 



Regular expressions
 
•	 Definition: R is a regular expression over alphabet Σ 

exactly if R is one of the following: 

–	 a, for some a in Σ, 

–	 ε, 

– ∅,
 
– ( R1 ∪ R2 ), where R1 and R2 are smaller regular expressions,
 
– ( R1 ° R2 ), where R1 and R2 are smaller regular expressions, or
 
– ( R1* ), where R1 is a smaller regular expression.
 

•	 These are just formal expressions---we haven’t said yet 
what they “mean”. 

•	 Example: ( ( ( 0 ∪ 1 ) ° ε )* ∪ 0 ) 
•	 Abbreviations: 

–	 Sometimes omit °, use juxtaposition. 
–	 Sometimes omit parens, use precedence of operations:  * highest, 

then °, then ∪ . 
•	 Example: Abbreviate above as ( ( 0 ∪ 1 ) ε )* ∪ 0 
•	 Example: ( 0 ∪ 1 )* 111 ( 0 ∪ 1 )* 



How regular expressions 
 
denote languages
 

•	 Define the languages recursively, based on the 
expression structure: 

•	 Definition: 
– L(a) = { a }; one string, with one symbol a.
 
– L(ε) = { ε }; one string, with no symbols.
 
– L(∅) = ∅; no strings.
 
– L( R1 ∪ R2 ) = L( R1 ) ∪ L( R2 )
 
– L( R1 ° R2 ) = L( R1 ) ° L( R2 )
 
– L( R1* ) = ( L(R1) )*
 

• 	Example: Expression ( ( 0 ∪ 1 ) ε )* ∪ 0 denotes 
 
language { 0, 1 }* ∪ { 0 } = { 0, 1 }*, all strings.
 

•	 Example: ( 0 ∪ 1 )* 111 ( 0 ∪ 1 )* denotes { 0, 1 }*
 
{ 111 } { 0, 1 }*, all strings with substring 111. 



More examples
 
• Definition: 

– L(a) = { a }; one string, with one symbol a.
 
– L(ε) = { ε }; one string, with no symbols.
 
– L(∅) = ∅; no strings.
 
– L( R1 ∪ R2 ) = L( R1 ) ∪ L( R2 )
 
– L( R1 ° R2 ) = L( R1 ) ° L( R2 )
 
– L( R1* ) = ( L(R1) )*
 

•	 Example: L = strings over { 0, 1 } with odd number of 1s. 
0* 1 0* ( 0* 1 0* 1 0* )* 

•	 Example: L = strings with substring 01 or 10. 
( 0 ∪ 1 )* 01 ( 0 ∪ 1 )* ∪ ( 0 ∪ 1 )* 10 ( 0 ∪ 1 )* 

Abbreviate (writing Σ for ( 0 ∪ 1 )):
 
Σ* 01 Σ* ∪ Σ* 10 Σ* 
 



More examples
 
•	 Example:  L = strings with substring 01 or 10. 

( 0 ∪ 1 )* 01 ( 0 ∪ 1 )* ∪ ( 0 ∪ 1 )* 10 ( 0 ∪ 1 )* 
Abbreviate:
 

Σ* 01 Σ* ∪ Σ* 10 Σ* 
 
•	 Example: L = strings with neither substring 01 or
 

10. 

–	 Can’t write complement. 

–	 But can write:  0* ∪ 1*. 


•	 Example: L = strings with no more than two
consecutive 0s or two consecutive 1s 
– Would be easy if we could write complement. 
( ε ∪ 1 ∪ 11 ) (( 0 ∪ 00 ) (1 ∪ 11 ) )* ( ε ∪ 0 ∪ 00 ) 

–	 Alternate one or two of each. 



More examples
 
•	 Regular expressions commonly used to specify 

syntax. 
– For (portions of) programming languages
 

– Editors  
  

–	 Command languages like UNIX shell 

•	 Example: Decimal numbers 

D D* . D* ∪ D* . D D*, 
where D is the alphabet { 0, …, 9 } 

Need a digit either before or after the decimal point. 



Regular Expressions Denote 
 
FA-Recognizable Languages
 



Languages denoted by regular 
 
expressions
 

•	 The languages denoted by regular expressions 
are exactly the regular (FA-recognizable) 
languages. 

•	 Theorem 1: If R is a regular expression, then L(R) 
is a regular language (recognized by a FA). 

•  Proof:  Easy. 
•	 Theorem 2: If L is a regular language, then there 

is a regular expression R with L = L(R). 
•  Proof:  Harder, more technical. 



Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
•  Proof:  

–	 For each R, define an NFA M with L(M) = L(R). 
–	 Proceed by induction on the structure of R: 

•	 Show for the three base cases. 
•	 Show how to construct NFAs for more complex expressions 

from NFAs for their subexpressions. 

–	 Case 1: R = a 
•	 L(R) = { a }                Accepts only a. 

a 

–	 Case 2: R = ε 
•  L(R) = {  ε } ε. 

Accepts only 



Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
•  Proof:  

–	 Case 3: R = ∅

•  L(R) =  ∅ Accepts nothing. 

–	 Case 4: R = R1 ∪ R2 
• M1 recognizes L(R1), 	 M1 

• M2 recognizes L(R2). ε 

•	 Same construction 

we used to show 

regular languages 
 M2 

are closed under ε

union. 




Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
• 	Proof:  

–	 Case 5: R = R1 ° R2 
• M1 recognizes L(R1), 
• M2 recognizes L(R2). 

•	 Same construction we used to show regular languages are 
closed under concatenation. 

M1 M2 
ε 

ε 



ε

ε

Theorem 1
 
•	 Theorem 1: If R is a regular expression, then L(R) 

is a regular language (recognized by a FA). 
• 	Proof:  

–	 Case 6:  R = (R1)* 
• M1 recognizes L(R1), 

•	 Same construction we used to show regular languages are 
closed under star. 

M1
ε 



Example for Theorem 1 
• L = ab ∪ a* 
• Construct machines recursively: 
• a:  a b: b
 

• ab: a bε 

ε

ε a 
• a*: 

a ε b 

ε

ε 

a• ab ∪ a*: ε ε 



Theorem 2
 
•	 Theorem 2: If L is a regular language, then there

is a regular expression R with L = L(R). 
•  Proof:  

– For each NFA M, define a regular expression R with 

L(R) = L(M). 


–	 Show with an example: 

b
x y z

b a a 


a	 b 

– Convert to a special form with only one final state, no 
incoming arrows to start state, no outgoing arrows from
final state. 

b
x y z qfq0

b a a 
ε a b ε 



Theorem 2
 

b
xq0 y z qf

b a a 
ε a b ε 

•	 Now remove states one at a time (any order), replacing 
labels of edges with more complicated regular expressions. 

•	 First remove z: 

b
x y qfq0

b a 
ε a b a* 

•	 New label b a* describes all strings that can move the 
machine from state y to state qf, visiting (just) z any
number of times. 



Theorem 2
 

b
x yq0 qf

b a 
ε a b a* 

•	 Then remove x: a ∪ bb* a 
b a*b*a 

yq0 qf 

•	 New label b*a describes all strings that can move the 
machine from q0 to y, visiting (just) x any number of times. 

• New label a ∪ bb* a describes all strings that can move the 
 
machine from y to y, visiting (just) x any number of times.
 



Theorem 2
 

yq0 qf

a ∪ bb* a 
b*a b a* 

•	 Finally, remove y: 

b*a (a ∪ bb* a)* b a* 
q0 qf 

•	 New label describes all strings that can move the machine 
from q0 to qf, visiting (just) y any number of times. 

•	 This final label is the needed regular expression. 



Theorem 2
 
•	 Define a generalized NFA (gNFA). 

–	 Same as NFA, but: 
•	 Only one accept state, ≠ start state. 
•	 Start state has no incoming arrows, accept state no outgoing arrows. 
•	 Arrows are labeled with regular expressions. 


–	 How it computes:  Follow an arrow labeled with a regular 

expression R while consuming a block of input that is a word in the 
language L(R). 

•	 Convert the original NFA M to a gNFA. 
•	 Successively transform the gNFA to equivalent gNFAs

(recognize same language), each time removing one state. 
•	 When we have 2 states and one arrow, the regular 

expression R on the arrow is the final answer: 

R
 

q0 qf 



we get: 

Theorem 2
 
•	 To remove a state x, consider every pair of other states, y 

and z, including y = z. 
•	 New label for edge (y, z) is the union of two expressions:
 

–	 What was there before, and 
–	 One for paths through (just) x. 

y	 

x

z

y x

R 
R ∪ SU*T• If y  ≠ z: 
 we get:
 y z 

S T 

U 

R U R ∪ SU*T 
S •	 If y = z:              y 

T
 



Next time…
 

•	 Existence of non-regular languages 
•	 Showing specific languages aren’t regular 
•	 The Pumping Lemma 
•	 Algorithms that answer questions about 

FAs. 

•	 Reading: Sipser, Section 1.4; some pieces
from 4.1 
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