
6.045 Pset 3: “The Gödel-Turing Mindblower” 

Assigned: Wednesday, February 23, 2011

Due: Wednesday, March 9, 2011


To facilitate grading, remember to solve each problem on a separate sheet of 
paper! Also remember to write your name on each sheet. 

1. Decidable and Recognizable 

(a) Recall that a language L is decidable if there exists a Turing machine M such that M (x) accepts 
for all x ∈ L and M (x) rejects for all x ∈/ L. Also, M is recognizable if there exists a Turing 
machine M such that M (x) accepts for all x ∈ L and M (x) either rejects or loops for all x /∈ L. 
Show that L is decidable if and only if L and L are both recognizable. 

(b) Recall that the language HALT = {〈M〉 : M ( ) halts} is not decidable. Show that HALT is 
recognizable (and that therefore, the decidable languages are a strict subset of the recognizable 
languages). 

(c) Show that HALT is not recognizable. 

(d) Show that every recognizable language L is Turing-reducible to HALT . 

2. Enumerators. A Turing machine M enumerates a language L if, when M is run forever, M outputs 
a list of strings x1, x2, x3, . . . containing all and only the strings in L. (The strings in L can be output 
in any order, and repeats are allowed.) Also, L is enumerable if there exists a Turing machine that 
enumerates L. 

(a) Show that L is enumerable if and only if L is recognizable. 

(b) Show that L is enumerable in strictly increasing order, with no repeats, if and only if L is decidable. 

3. Nondeterministic Turing Machines. Recall from class that a nondeterministic Turing machine 
(NDTM) M is just a Turing machine that can make nondeterministic transitions—analogous to an 
NDFA or an NPDA. Given an input x, the evolution of M (x) corresponds to a (possibly-infinite) tree, 
where each path from the root vertex downward corresponds to a possible history of M ’s computation. 
Each path can either be infinite (which corresponds to running forever) or finite (which corresponds 
to halting), and each finite path can either accept or reject at the leaf vertex. 

(a) Say that an NDTM M decides a language L if (i) M (x) has at least one accepting path and 
no rejecting paths for every input x ∈ L, and (ii) M (x) has at least one rejecting path and no 
accepting paths for every input x /∈ L. Show that L is decidable by an NDTM, if and only if L 
is decidable by an ordinary Turing machine. 

(b) Say that an NDTM M recognizes a language L if (i) M (x) has at least one accepting path for 
every input x ∈ L, and (ii) M (x) has no accepting paths for every input x /∈ L. Show that L is 
recognizable by an NDTM, if and only if L is recognizable by an ordinary Turing machine. 

(c) Given an NDTM M , say that M (x) halts if every one of its computation paths is finite. Also, 
let L be the language consisting of 〈M〉 for every NDTM M such that M ( ) halts. Show that L 
is recognizable. [Hint: Use König’s Lemma.] 



(d) Briefly explain why you needed König’s Lemma for part c. 

4. Busy Beaver. Recall that the Busy Beaver function, or BB (n), is defined to be the maximum number 
of steps made by any n-state Turing machine that eventually halts (when run on an initially-blank 
tape). 

(a) Show that the function BB (n) is Turing-reducible to HALT . 

(b) Let C : N → N be any integer function such that C (n) ≥ BB (n) for all n. Show that HALT is 
Turing-reducible to C—so in particular, C is not computable. 

(c) [Extra credit] Show that there is not even a computable function C such that C (n) ≥ BB (n) for 
infinitely many values of n. 

5. Fun with Gödel. Let F be some formal axiomatic system. You can assume F is sound (that is, it 
only proves true statements), and also that F is strong enough for Gödel’s Incompleteness Theorem to 
apply to it. Let G (F ) be the Gödel sentence of F (that is, a mathematical encoding of “This sentence 
is not provable in F .”) Also, let M be a Turing machine that generates all possible F -proofs, one by 
one, and halts if and only if it finds a proof of G (F ). 

(a) Does M halt? Why or why not? 

(b) Show that the question of whether or not M halts is independent of F . 

(c) Suppose M has k states. Show that, for all n ≥ k, the value of BB (n) is not provable in F . 

6. The Church-Turing Thesis in Action. A deterministic queue automaton (DQA) is defined the 
same way as a deterministic pushdown automata (DPDA), except that it has a queue instead of a 
stack. In other words, a DQA is a deterministic finite automaton augmented with an unbounded 
queue, together with the operations of (a) pushing a symbol onto the “back” of the queue, and (b) 
popping the symbol at the “front” of the queue. Show that DQAs are equivalent in power to Turing 
machines: that is, any given language L is decidable by a DQA if and only if it’s decidable by a Turing 
machine. 

7. Kolmogorov Complexity. Let s (n) be the number of possible n-state, single-tape Turing machines 
over the 3-symbol alphabet {0, 1, #}. 

(a) Show that s (n) ≤ (6n + 2)3n . 

(b) Say that a Turing machine M generates the string x ∈ {0, 1} ∗ 
if M ( ) = x: that is, if given 

an initially blank tape, M halts with · · · 0#x#0 · · · written on its tape. Then let K (x), or 
the Kolmogorov complexity of x, be the minimum number of states of any Turing machine that 
generates x. Show that K (x) ≤ n + O (1) for every n-bit string x. 

(c) Using part a, show that for every sufficiently large n, there exists an n-bit string x such that 
K (x) ≥ n0.99 . [Hint: How many n-bit strings are there?] 

(d) Suppose K (x) were a computable function. Using part c, show that there would exist a Turing 
machine that took any positive integer n as input (encoded in binary using log n bits), and that 
output a string x ∈ {0, 1}n 

such that K (x) ≥ n0.99 . 

(e) [Extra credit] Using part d, show that K (x) is not a computable function. 
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