
6.045 Pset 3: “The Gödel-Turing Mindblower”

Assigned: Wednesday, February 23, 2011

Due: Wednesday, March 9, 2011

To facilitate grading, remember to solve each problem on a separate sheet of
paper! Also remember to write your name on each sheet.

1. Decidable and Recognizable

(a) Recall that a language L is decidable if there exists a Turing machine M such that M (x) accepts
for all x ∈ L and M (x) rejects for all x ∈/ L. Also, M is recognizable if there exists a Turing
machine M such that M (x) accepts for all x ∈ L and M (x) either rejects or loops for all x /∈ L.
Show that L is decidable if and only if L and L are both recognizable.

(b) Recall that the language HALT = {〈M〉 : M () halts} is not decidable. Show that HALT is
recognizable (and that therefore, the decidable languages are a strict subset of the recognizable
languages).

(c) Show that HALT is not recognizable.

(d) Show that every recognizable language L is Turing-reducible to HALT .

2. Enumerators. A Turing machine M enumerates a language L if, when M is run forever, M outputs
a list of strings x1, x2, x3, . . . containing all and only the strings in L. (The strings in L can be output
in any order, and repeats are allowed.) Also, L is enumerable if there exists a Turing machine that
enumerates L.

(a) Show that L is enumerable if and only if L is recognizable.

(b) Show that L is enumerable in strictly increasing order, with no repeats, if and only if L is decidable.

3. Nondeterministic Turing Machines. Recall from class that a nondeterministic Turing machine
(NDTM) M is just a Turing machine that can make nondeterministic transitions—analogous to an
NDFA or an NPDA. Given an input x, the evolution of M (x) corresponds to a (possibly-infinite) tree,
where each path from the root vertex downward corresponds to a possible history of M ’s computation.
Each path can either be infinite (which corresponds to running forever) or finite (which corresponds
to halting), and each finite path can either accept or reject at the leaf vertex.

(a) Say that an NDTM M decides a language L if (i) M (x) has at least one accepting path and
no rejecting paths for every input x ∈ L, and (ii) M (x) has at least one rejecting path and no
accepting paths for every input x /∈ L. Show that L is decidable by an NDTM, if and only if L
is decidable by an ordinary Turing machine.

(b) Say that an NDTM M recognizes a language L if (i) M (x) has at least one accepting path for
every input x ∈ L, and (ii) M (x) has no accepting paths for every input x /∈ L. Show that L is
recognizable by an NDTM, if and only if L is recognizable by an ordinary Turing machine.

(c) Given an NDTM M , say that M (x) halts if every one of its computation paths is finite. Also,
let L be the language consisting of 〈M〉 for every NDTM M such that M () halts. Show that L
is recognizable. [Hint: Use König’s Lemma.]

(d) Briefly explain why you needed König’s Lemma for part c.

4. Busy Beaver. Recall that the Busy Beaver function, or BB (n), is defined to be the maximum number
of steps made by any n-state Turing machine that eventually halts (when run on an initially-blank
tape).

(a) Show that the function BB (n) is Turing-reducible to HALT .

(b) Let C : N → N be any integer function such that C (n) ≥ BB (n) for all n. Show that HALT is
Turing-reducible to C—so in particular, C is not computable.

(c) [Extra credit] Show that there is not even a computable function C such that C (n) ≥ BB (n) for
infinitely many values of n.

5. Fun with Gödel. Let F be some formal axiomatic system. You can assume F is sound (that is, it
only proves true statements), and also that F is strong enough for Gödel’s Incompleteness Theorem to
apply to it. Let G (F) be the Gödel sentence of F (that is, a mathematical encoding of “This sentence
is not provable in F .”) Also, let M be a Turing machine that generates all possible F -proofs, one by
one, and halts if and only if it finds a proof of G (F).

(a) Does M halt? Why or why not?

(b) Show that the question of whether or not M halts is independent of F .

(c) Suppose M has k states. Show that, for all n ≥ k, the value of BB (n) is not provable in F .

6. The Church-Turing Thesis in Action. A deterministic queue automaton (DQA) is defined the
same way as a deterministic pushdown automata (DPDA), except that it has a queue instead of a
stack. In other words, a DQA is a deterministic finite automaton augmented with an unbounded
queue, together with the operations of (a) pushing a symbol onto the “back” of the queue, and (b)
popping the symbol at the “front” of the queue. Show that DQAs are equivalent in power to Turing
machines: that is, any given language L is decidable by a DQA if and only if it’s decidable by a Turing
machine.

7. Kolmogorov Complexity. Let s (n) be the number of possible n-state, single-tape Turing machines
over the 3-symbol alphabet {0, 1, #}.

(a) Show that s (n) ≤ (6n + 2)3n .

(b) Say that a Turing machine M generates the string x ∈ {0, 1} ∗
if M () = x: that is, if given

an initially blank tape, M halts with · · · 0#x#0 · · · written on its tape. Then let K (x), or
the Kolmogorov complexity of x, be the minimum number of states of any Turing machine that
generates x. Show that K (x) ≤ n + O (1) for every n-bit string x.

(c) Using part a, show that for every sufficiently large n, there exists an n-bit string x such that
K (x) ≥ n0.99 . [Hint: How many n-bit strings are there?]

(d) Suppose K (x) were a computable function. Using part c, show that there would exist a Turing
machine that took any positive integer n as input (encoded in binary using log n bits), and that
output a string x ∈ {0, 1}n

such that K (x) ≥ n0.99 .

(e) [Extra credit] Using part d, show that K (x) is not a computable function.

2

MIT OpenCourseWare
http://ocw.mit.edu

6.045J / 18.400J Automata, Computability, and Complexity
Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

