6.045 Pset 2

Assigned: Friday, February 11, 2011 Due: Thursday, February 24, 2011

To facilitate grading, remember to solve each problem on a separate sheet of paper!

- 1. Show that the following languages are context-free.
 - (a) $L = \{a^n b^{2n} : n \ge 0\}$
 - (b) The language $L \subset \{(,)\}^*$ that consists of all strings of balanced parentheses: for example, (()())()(()) is in L, but ())(() is not in L.
 - (c) $L = \{x \in \{a, b\}^* \mid x \text{ contains an equal number of } a \text{'s and } b \text{'s} \}$
 - (d) $L = \{x \in \{a, b\}^* \mid x \text{ contains more } a \text{'s than } b \text{'s} \}$
 - (e) [Extra credit] $L = \{x \# y \mid x, y \in \{a, b\}^* \text{ and } x \neq y\}$
- 2. Show that context-free languages are *closed under union*: that is, if A and B are both CFLs, then $A \cup B$ is a CFL also.
- 3. Show that every regular language is also a CFL. [Hint: Explain how to convert any regular expression into a CFG that generates the same language.]
- 4. Let $L_1 = \{a^n b^n c^m | n, m \ge 0\}$ and $L_2 = \{a^n b^m c^m | n, m \ge 0\}$.
 - (a) Show that L_1 and L_2 are both CFLs. [Note: You only need to give a CFG generating L_1 ; for L_2 you can appeal to the symmetry with L_1 .]
 - (b) Recall from pset1 that regular languages are closed under intersection: that is, if A and B are both regular, then so is $A \cap B$. Using problem 4a together with a result from class, show that CFLs are not similarly closed under intersection.
 - (c) Show that CFLs are not closed under complement: that is, even if L is a CFL, the complementary language $\overline{L} = \{x \mid x \notin L\}$ need not be a CFL. [Hints: problem 2, L_1 and L_2 , De Morgan's Law.]
- 5. Let L be language consisting of 1, 101, 101001, 1010010001, etc. Show that L is not context-free.
- 6. Let $L = \{1^n \mid n \text{ is prime}\}.$
 - (a) Show that L is not regular. (You can use the fact that there are infinitely many prime numbers.)
 - (b) Show that the regular languages are closed under complement. Conclude that $\overline{L} = \{1^n \mid n \text{ is composite}\}\$ is not regular either.
 - (c) Show that L is not context-free.
 - (d) [Extra credit] Show that $\overline{L} = \{1^n \mid n \text{ is composite}\}\$ is not context-free. (You can use Dirichlet's Theorem, which says that if GCD (n,k) = 1, then the sequence n, n+k, n+2k... contains infinitely many primes.)

- 7. Let $L = \{\#x\# \mid x \in \{0,1\}^* \text{ is a palindrome}\}$. Design a Turing machine, over the alphabet $\{0,1,\#\}$, that recognizes L. Give the complete state transition diagram.
- 8. Let $L = \{\#x\# \mid x \in \{0,1\}^* \text{ contains an equal number of 0's and 1's}\}$. Verbally describe a Turing machine, over the alphabet $\{0,1,\#\}$, that recognizes L. (*Note:* You can't just write "count the number of 0's and 1's"—explain how the counting is done!)

MIT OpenCourseWare http://ocw.mit.edu

6.045 J / 18.400 J Automata, Computability, and Complexity Spring 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.