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4.3 Functions

4.3.1 Domains and Images
A function assigns an element of one set, called the domain, to an element of an-
other set, called the codomain. The notation

f W A! B

indicates that f is a function with domain, A, and codomain, B . The familiar
notation “f .a/ D b” indicates that f assigns the element b 2 B to a. Here b

would be called the value of f at argument a.
Functions are often defined by formulas, as in:

1
f1.x/ WWD

x2

where x is a real-valued variable, or

f2.y; z/ WWD y10yz

where y and z range over binary strings, or

f3.x; n/ WWD the length n sequence .x; : : : ; x/

n x’s

where n ranges over the nonnegative integers.

„ ƒ‚ …

A function with a finite domain could be specified by a table that shows the value
of the function at each element of the domain. For example, a function f4.P; Q/

where P and Q are propositional variables is specified by:

P Q f4.P; Q/

T T T
T F F
F T T
F F T

Notice that f4 could also have been described by a formula:

f4.P; Q/ WWD ŒP IMPLIES Qç:

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
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f5.y/ to be the length of a left to right search of the bits in the binary string y until
a 1 appears, so

f5.0010/ D 3;

f5.100/ D 1;

f5.0000/ is undefined:

Notice that f5 does not assign a value to any string of just 0’s. This illustrates an
important fact about functions: they need not assign a value to every element in the
domain. In fact this came up in our first example f1.x/ D 1=x2, which does not
assign a value to 0. So in general, functions may be partial functions, meaning that
there may be domain elements for which the function is not defined. If a function
is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. So if f W A! B , and S is a subset of A, we define
f .S/ to be the set of all the values that f takes when it is applied to elements of S .
That is,

f .S/ WWD fb 2 B j f .s/ D b for some s 2 Sg:
For example, if we let Œr; sç denote set of numbers in the interval from r to s on the
real line, then f1.Œ1; 2ç/ D Œ1=4; 1ç.

For another example, let’s take the “search for a 1” function, f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5.X/ would be the odd nonnegative integers.

Applying f to a set, S , of arguments is referred to as “applying f pointwise to
4S”, and the set f .S/ is referred to as the image of S under f . The set of values

that arise from applying f to all possible arguments is called the range of f . That
is,

range.f / WWD f .domain.f //:

Some authors refer to the codomain as the range of a function, but they shouldn’t.
The distinction between the range and codomain will be important later in Sec-
tions 4.5 when we relate sizes of sets to properties of functions between them.

4.3.2 Function Composition
Doing things step by step is a universal idea. Taking a walk is a literal example, but
so is cooking from a recipe, executing a computer program, evaluating a formula,
and recovering from substance abuse.

4There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A, because the domain of f is A, while the domain
of pointwise-f is pow.A/. It is usually clear from context whether f or pointwise-f is meant, so
there is no harm in overloading the symbol f in this way.
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Abstractly, taking a step amounts to applying a function, and going step by step
corresponds to applying functions one after the other. This is captured by the op-
eration of composing functions. Composing the functions f and g means that first
f is applied to some argument, x, to produce f .x/, and then g is applied to that
result to produce g.f .x//.

Definition 4.3.1. For functions f W A ! B and g W B ! C , the composition,
g ı f , of g with f is defined to be the function from A to C defined by the rule:

.g ı f /.x/ WWD g.f .x//;

for all x 2 A.

Function composition is familiar as a basic concept from elementary calculus,
and it plays an equally basic role in discrete mathematics.

4.4 Binary Relations

Binary relations define relations between two objects. For example, “less-than” on
the real numbers relates every real number, a, to a real number, b, precisely when
a < b. Similarly, the subset relation relates a set, A, to another set, B , precisely
when A ✓ B . A function f W A! B is a special case of binary relation in which
an element a 2 A is related to an element b 2 B precisely when b D f .a/.

In this section we’ll define some basic vocabulary and properties of binary rela-
tions.

Definition 4.4.1. A binary relation, R, consists of a set, A, called the domain of
R, a set, B , called the codomain of R, and a subset of A⇥B called the graph of R.

A relation whose domain is A and codomain is B is said to be “between A and
B”, or “from A to B .” As with functions, we write R W A ! B to indicate that R

is a relation from A to B . When the domain and codomain are the same set, A, we
simply say the relation is “on A.” It’s common to use “a R b” to mean that the pair
.a; b/ is in the graph of R.5

Notice that Definition 4.4.1 is exactly the same as the definition in Section 4.3
of a function, except that it doesn’t require the functional condition that, for each

5Writing the relation or operator symbol between its arguments is called infix notation. Infix
expressions like “m < n” or “mC n” are the usual notation used for things like the less-then relation
or the addition operation rather than prefix notation like “< .m; n/” or “C.m; n/.”
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domain element, a, there is at most one pair in the graph whose first coordinate is
a. As we said, a function is a special case of a binary relation.

The “in-charge of” relation, Chrg, for MIT in Spring ’10 subjects and instructors
is a handy example of a binary relation. Its domain, Fac, is the names of all the
MIT faculty and instructional staff, and its codomain is the set, SubNums, of subject
numbers in the Fall ’09–Spring ’10 MIT subject listing. The graph of Chrg contains
precisely the pairs of the form

.hinstructor-namei ; hsubject-numi/

such that the faculty member named hinstructor-namei is in charge of the subject
with number hsubject-numi that was offered in Spring ’10. So graph.Chrg/ con-
tains pairs like

.T. Eng; 6.UAT/

.G. Freeman; 6.011/

.G. Freeman; 6.UAT/

.G. Freeman; 6.881/

.G. Freeman; 6.882/

.J. Guttag; 6.00/

.A. R. Meyer; (4.4)6.042/

.A. R. Meyer; 18.062/

.A. R. Meyer; 6.844/

.T. Leighton; 6.042/

.T. Leighton; 18.062/
:::

Some subjects in the codomain, SubNums, do not appear among this list of
pairs—that is, they are not in range.Chrg/. These are the Fall term-only subjects.
Similarly, there are instructors in the domain, Fac, who do not appear in the list
because they are not in charge of any Spring term subjects.

4.4.1 Relation Diagrams
Some standard properties of a relation can be visualized in terms of a diagram. The
diagram for a binary relation, R, has points corresponding to the elements of the
domain appearing in one column (a very long column if domain.R/ is infinite). All
the elements of the codomain appear in another column which we’ll usually picture
as being to the right of the domain column. There is an arrow going from a point,
a, in the lefthand, domain column to a point, b, in the righthand, codomain column,
precisely when the corresponding elements are related by R. For example, here are
diagrams for two functions:
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A B A B

a - 1 a - 1

b P PP 2 b P 2
P PP⌘ P⌘P Pc ⌘ c ⌘PP⌘ 3 Q ⌘ 3
P⌘ P⌘ ⌘QP⌘ ⌘ ⌘ Qd ⌘ 4 d Q 4

⌘ Q
e ⌘ 5

Being a function is certainly an important property of a binary relation. What it
means is that every point in the domain column has at most one arrow coming out
of it. So we can describe being a function as the “ 1 arrow out” property. There
are four more standard properties of relations that come up all the time. Here are
all five properties defined in terms of arrows:

Definition 4.4.2. A binary relation, R, is:

✏ a function when it has the Œ 1 arrow outç property.

✏ surjective when it has the Œ� 1 arrows inç property. That is, every point in
the righthand, codomain column has at least one arrow pointing to it.

✏ total when it has the Œ� 1 arrows outç property.

✏ injective when it has the Œ 1 arrow inç property.

✏ bijective when it has both the ŒD 1 arrow outç and the ŒD 1 arrow inç prop-
erty.

From here on, we’ll stop mentioning the arrows in these properties and for ex-
ample, just write Œ 1 inç instead of Œ 1 arrows inç.

So in the diagrams above, the relation on the left has the ŒD 1 outç and Œ� 1 inç

properties, which means it is a total, surjective function. But it does not have the
Œ 1 inç property because element 3 has two arrows going into it; it is not injective.

The relation on the right has the ŒD 1 outç and Œ 1 inç properties, which means
it is a total, injective function. But it does not have the Œ� 1 inç property because
element 4 has no arrow going into it; it is not surjective.

The arrows in a diagram for R correspond, of course, exactly to the pairs in the
graph of R. Notice that the arrows alone are not enough to determine, for example,
if R has the Œ� 1 outç, total, property. If all we knew were the arrows, we wouldn’t
know about any points in the domain column that had no arrows out. In other
words, graph.R/ alone does not determine whether R is total: we also need to
know what domain.R/ is.

Pq

Pq

⌘3

⌘3
Pq

Qs

⌘3
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Example 4.4.3. The function defined by the formula 1=x2 has the Œ� 1 outç prop-
erty if its domain is RC, but not if its domain is some set of real numbers including
0. It has the ŒD 1 inç and ŒD 1 outç property if its domain and codomain are both
RC, but it has neither the Œ 1 inç nor the Œ� 1 outç property if its domain and
codomain are both R.

4.4.2 Relational Images
The idea of the image of a set under a function extends directly to relations.

Definition 4.4.4. The image of a set, Y , under a relation, R, written R.Y /, is the
set of elements of the codomain, B , of R that are related to some element in Y . In
terms of the relation diagram, R.Y / is the set of points with an arrow coming in
that starts from some point in Y .

For example, the set of subject numbers that Meyer is in charge of in Spring ’10
is exactly Chrg.A. Meyer/. To figure out what this is, we look for all the arrows
in the Chrg diagram that start at “A. Meyer,” and see which subject-numbers are
at the other end of these arrows. Looking at the list (4.4) of pairs in graph.Chrg/,
we see that these subject-numbers are f6.042, 18.062, 6.844g. Similarly, to find the
subject numbers that either Freeman or Eng are in charge of, we can collect all the
arrows that start at either “G. Freeman,” or “T. Eng” and, again, see which subject-
numbers are at the other end of these arrows. This is Chrg.fG. Freeman; T. Engg/.
Looking again at the list (4.4), we see that

Chrg.fG. Freeman; T. Engg/ D f6.011, 6.881, 6.882, 6.UATg

Finally, Fac is the set of all in-charge instructors, so Chrg.Fac/ is the set of all the
subjects listed for Spring ’10.

Inverse Relations and Images

Definition 4.4.5. The inverse, R�1 of a relation R W A! B is the relation from B

to A defined by the rule
b R�1 a IFF a R b:

In other words, R�1 is the relation you get by reversing the direction of the
arrows in the diagram of R.

Definition 4.4.6. The image of a set under the relation, R�1, is called the inverse
image of the set. That is, the inverse image of a set, X , under the relation, R, is
defined to be R�1.X/.
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Continuing with the in-charge example above, the set of instructors in charge
of 6.UAT in Spring ’10 is exactly the inverse image of f6.UATg under the Chrg
relation. From the list (4.4), we see that Eng and Freeman are both in charge of
6.UAT, that is,

fT. Eng; D. Freemang ✓ Chrg�1.f6.UATg/:

We can’t assert equality here because there may be additional pairs further down
the list showing that additional instructors are co-incharge of 6.UAT.

Now let Intro be the set of introductory course 6 subject numbers. These are the
subject numbers that start with “6.0.” So the set of names of the instructors who
were in-charge of introductory course 6 subjects in Spring ’10, is Chrg�1.Intro/.
From the part of the Chrg list shown in (4.4), we see that Meyer, Leighton, Free-
man, and Guttag were among the instructors in charge of introductory subjects in
Spring ’10. That is,

fMeyer, Leighton, Freeman, Guttagg ✓ Chrg�1.Intro/:

Finally, Chrg�1.SubNums/, is the set of all instructors who were in charge of a
subject listed for Spring ’10.

4.5 Finite Cardinality

A finite set is one that has only a finite number of elements. This number of ele-
ments is the “size” or cardinality of the set:

Definition 4.5.1. If A is a finite set, the cardinality of A, written jAj, is the number
of elements in A.

A finite set may have no elements (the empty set), or one element, or two ele-
ments,. . . , so the cardinality of finite sets is always a nonnegative integer.

Now suppose R W A ! B is a function. This means that every element of A

contributes at most one arrow to the diagram for R, so the number of arrows is at
most the number of elements in A. That is, if R is a function, then

jAj � #arrows:

If R is also surjective, then every element of B has an arrow into it, so there must
be at least as many arrows in the diagram as the size of B . That is,

#arrows � jBj:
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Combining these inequalities implies that if R is a surjective function, then jAj �
jBj.

In short, if we write A surj B to mean that there is a surjective function from
A to B , then we’ve just proved a lemma: if A surj B for finite sets A; B , then
jAj � jBj. The following definition and lemma lists this statement and three similar
rules relating domain and codomain size to relational properties.

Definition 4.5.2. Let A; B be (not necessarily finite) sets. Then

1. A surj B iff there is a surjective function from A to B .

2. A inj B iff there is an injective total relation from A to B .

3. A bij B iff there is a bijection from A to B .

Lemma 4.5.3. For finite sets A; B:

1. If A surj B , then jAj � jBj.

2. If A inj B , then jAj  jBj.

3. If A bij B , then jAj D jBj.

Proof. We’ve already given an “arrow” proof of implication 1. Implication 2. fol-
lows immediately from the fact that if R has the Œ 1 outç, function property, and
the Œ� 1 inç, surjective property, then R�1 is total and injective, so A surj B iff
B inj A. Finally, since a bijection is both a surjective function and a total injective
relation, implication 3. is an immediate consequence of the first two. ⌅

Lemma 4.5.3.1. has a converse: if the size of a finite set, A, is greater than
or equal to the size of another finite set, B , then it’s always possible to define a
surjective function from A to B . In fact, the surjection can be a total function. To
see how this works, suppose for example that

A D fa0; a1; a2; a3; a4; a5g
B D fb0; b1; b2; b3g:

Then define a total function f W A! B by the rules

f .a0/ WWD b0; f .a1/ WWD b1; f .a2/ WWD b2; f .a3/ D f .a4/ D f .a5/ WWD b3:

More concisely,
f .ai / WWD bmin.i;3/;
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for 0  i  5. Since 5 � 3, this f is a surjection.
So we have figured out that if A and B are finite sets, then jAj � jBj if and only if

A surj B . All told, this argument wraps up the proof of a theorem that summarizes
the whole finite cardinality story:

Theorem 4.5.4. [Mapping Rules] For finite sets, A; B ,

jAj � jBj iff A surj B; (4.5)
jAj  jBj iff A inj B; (4.6)
jAj D jBj iff A bij B; (4.7)

4.5.1 How Many Subsets of a Finite Set?
As an application of the bijection mapping rule (4.7), we can give an easy proof of:

Theorem 4.5.5. There are 2n subsets of an n-element set. That is,

jAj D n implies j pow.A/j D 2n:

For example, the three-element set fa1; a2; a3g has eight different subsets:

; fa1g fa2g fa1; a2g
fa3g fa1; a3g fa2; a3g fa1; a2; a3g

Theorem 4.5.5 follows from the fact that there is a simple bijection from subsets
of A to f0; 1gn, the n-bit sequences. Namely, let a1; a2; : : : ; an be the elements
of A. The bijection maps each subset of S ✓ A to the bit sequence .b1; : : : ; bn/

defined by the rule that
bi D 1 iff ai 2 S:

For example, if n D 10, then the subset fa2; a3; a5; a7; a10g maps to a 10-bit
sequence as follows:

subset: f a2; a3; a5; a7; a10 g
sequence: . 0; 1; 1; 0; 1; 0; 1; 0; 0; 1 /

Now by bijection case of the Mapping Rules 4.5.4.(4.7),

j pow.A/j D jf0; 1gnj:

But every computer scientist knows6 that there are 2n n-bit sequences! So we’ve
proved Theorem 4.5.5!

6In case you’re someone who doesn’t know how many n-bit sequences there are, you’ll find the
2n explained in Section 14.2.2.
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