“mcs” — 2015/5/18 — 1:43 — page 849 — #857

20.2 Random Walks on Graphs 849

The hyperlink structure of the World Wide Web can be described as a digraph. The
vertices are the web pages with a directed edge from vertex x to vertex y if x has

a link to y. For example, in the following graph the vertices x1, . .., x, correspond
to web pages and (xi —>X j) is a directed edge when page x; contains a hyperlink to
page x;.
x3 x4
x7
x2
x1 x5
X6

The web graph is an enormous graph with trillions of vertices. In 1995, two
students at Stanford, Larry Page and Sergey Brin, realized that the structure of
this graph could be very useful in building a search engine. Traditional document
searching programs had been around for a long time and they worked in a fairly
straightforward way. Basically, you would enter some search terms and the search-
ing program would return all documents containing those terms. A relevance score
might also be returned for each document based on the frequency or position that
the search terms appeared in the document. For example, if the search term ap-
peared in the title or appeared 100 times in a document, that document would get a
higher score.

This approach works fine if you only have a few documents that match a search
term. But on the web, there are many billions of documents and millions of matches

“mcs” — 2015/5/18 — 1:43 — page 850 — #858

850

Chapter 20 Random Walks

to a typical search. For example, on May 2, 2012, a search on Google for “ ‘Mathe-
matics for Computer Science’ text” gave 482,000 hits! Which ones should we look
at first? Just because a page gets a high keyword score—say because it has “Math-
ematics Mathematics ... Mathematics” copied 200 times across the front of the
document—does not make it a great candidate for attention. The web is filled with
bogus websites that repeat certain words over and over in order to attract visitors.

Google’s enormous market capital in part derives from the revenue it receives
from advertisers paying to appear at the top of search results. That top placement
would not be worth much if Google’s results were as easy to manipulate as keyword
frquencies. Advertisers pay because Google’s ranking method is consistently good
at determining the most relevant web pages. For example, Google demonstrated its
accuracy in our case by giving first rank2 to our 6.042 text.

So how did Google know to pick our text to be first out of 482,000?—because
back in 1995 Larry and Sergey got the idea to allow the digraph structure of the
web to determine which pages are likely to be the most important.

20.2.1 A First Crack at Page Rank

Looking at the web graph, do you have an idea which vertex/page might be the
best to rank first? Assume that all the pages match the search terms for now. Well,
intuitively, we should choose x5, since lots of other pages point to it. This leads
us to their first idea: try defining the page rank of x to be indegree(x), the number
of links pointing to x. The idea is to think of web pages as voting for the most
important page—the more votes, the better the rank.

Unfortunately, there are some problems with this idea. Suppose you wanted to
have your page get a high ranking. One thing you could do is to create lots of
dummy pages with links to your page.

+n

2First rank for some reason was an early version archived at Princeton; the Spring 2010 version
on the MIT Open Courseware site ranked 4th and 5Sth.

“mcs” — 2015/5/18 — 1:43 — page 851 — #859

20.2. Random Walks on Graphs 851

There is another problem—a page could become unfairly influential by having
lots of links to other pages it wanted to hype.

o ‘!

@ +1
@ +!

®

® +1

So this strategy for high ranking would amount to, “vote early, vote often,” which
is no good if you want to build a search engine that’s worth paying fees for. So,
admittedly, their original idea was not so great. It was better than nothing, but
certainly not worth billions of dollars.

20.2.2 Random Walk on the Web Graph

But then Sergey and Larry thought some more and came up with a couple of im-
provements. Instead of just counting the indegree of a vertex, they considered the
probability of being at each page after a long random walk on the web graph. In
particular, they decided to model a user’s web experience as following each link on
a page with uniform probability. For example, if the user is at page x, and there
are three links from page x, then each link is followed with probability 1/3. More
generally, they assigned each edge x — y of the web graph with a probability
conditioned on being on page x:

1
Pr |follow link (x — t =
r [ollow link {x — y) | at page x] outdeg(x)
The simulated user experience is then just a random walk on the web graph.
We can also compute the probability of arriving at a particular page, y, by sum-
ming over all edges pointing to y. We thus have

Pr[goto y] = Z Pr [follow link (x— y) | at page x] - Pr[at page x|
edges (x—y)
Prat
-y rfatx] (20.13)
outdeg(x)

edges (x—y)

“mcs” — 2015/5/18 — 1:43 — page 852 — #860

852

Chapter 20 Random Walks

For example, in our web graph, we have

Pr[at x7] Prfat x5]
2 1)

Pr[go to x4] =

One can think of this equation as x7 sending half its probability to x, and the other
half to x4. The page x5 sends all of its probability to x4.

There’s one aspect of the web graph described thus far that doesn’t mesh with
the user experience—some pages have no hyperlinks out. Under the current model,
the user cannot escape these pages. In reality, however, the user doesn’t fall off
the end of the web into a void of nothingness. Instead, he restarts his web journey.
Moreover, even if a user does not get stuck at a dead end, they will commonly get
discouraged after following some unproductive path for a while and will decide to
restart.

To model this aspect of the web, Sergey and Larry added a supervertex to the
web graph and added an edge from every page to the supervertex. Moreover, the
supervertex points to every other vertex in the graph with equal probability, allow-
ing the walk to restart from a random place. This ensures that the graph is strongly
connected.

If a page had no hyperlinks, then its edge to the supervertex has to be assigned
probability one. For pages that had some hyperlinks, the additional edge pointing
to the supervertex was assigned some specially given probability. In the original
versions of Page Rank, this probability was arbitrarily set to 0.15. That is, each
vertex with outdegree n > 1 got an additional edge pointing to the supervertex
with assigned probability 0.15; its other n outgoing edges were still kept equally
likely, that is, each of the n edges was assigned probability 0.85/n.

20.2.3 Stationary Distribution & Page Rank

The basic idea behind page rank is finding a stationary distribution over the web
graph, so let’s define a stationary distribution.

Suppose each vertex is assigned a probability that corresponds, intuitively, to the
likelihood that a random walker is at that vertex at a randomly chosen time. We
assume that the walk never leaves the vertices in the graph, so we require that

> Prlatx] = 1. (20.14)

vertices x

Definition 20.2.1. An assignment of probabilities to vertices in a digraph is a sta-
tionary distribution if for all vertices x

Pr[at x] = Pr[go to x at next step]

“mcs” — 2015/5/18 — 1:43 — page 853 — #861

20.2. Random Walks on Graphs 853

Sergey and Larry defined their page ranks to be a stationary distribution. They
did this by solving the following system of linear equations: find a nonnegative
number, Rank(x), for each vertex, x, such that

Rank(y)

—_— 20.15
outdeg(y) ()

Rank(x) = Z

edges (y—x)

corresponding to the intuitive equations given in (20.13). These numbers must also
satisfy the additional constraint corresponding to (20.14):

>~ Rank(x) = 1. (20.16)

vertices X

So if there are n vertices, then equations (20.15) and (20.16) provide a system
of n + 1 linear equations in the n variables, Rank(x). Note that constraint (20.16)
is needed because the remaining constraints (20.15) could be satisfied by letting
Rank(x) ::= 0 for all x, which is useless.

Sergey and Larry were smart fellows, and they set up their page rank algorithm
so it would always have a meaningful solution. Strongly connected graphs have
unique stationary distributions (Problem 20.12), and their addition of a superver-
tex ensures this. Moreover, starting from any vertex and taking a sufficiently long
random walk on the graph, the probability of being at each page will get closer and
closer to the stationary distribution. Note that general digraphs without superver-
tices may have neither of these properties: there may not be a unique stationary
distribution, and even when there is, there may be starting points from which the
probabilities of positions during a random walk do not converge to the stationary
distribution (Problem 20.8).

Now just keeping track of the digraph whose vertices are trillions of web pages
is a daunting task. That’s why in 2011 Google invested $168,000,000 in a solar
power plant—the electrical power drawn by Google’s servers in 2011 would have
supplied the needs of 200,000 households2 Indeed, Larry and Sergey named their
system Google after the number 101°°—which is called a “googol”—to reflect the
fact that the web graph is so enormous.

Anyway, now you can see how this text ranked first out of 378,000 matches.
Lots of other universities used our notes and presumably have links to the MIT
Mathematics for Computer Science Open Course Ware site, and the university sites
themselves are legitimate, which ultimately leads to the text getting a high page
rank in the web graph.

3Google Details, and Defends, Its Use of Electricity, New York Times, September 8, 2011.

http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-of-electricity.html
http://phys.org/news/2011-04-google-invests-million-solar-power.html
http://phys.org/news/2011-04-google-invests-million-solar-power.html

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

