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Counting ears and dividing by two is a silly way to count the number of people in
a room, but this approach is representative of a powerful counting principle.

A k-to-1 function maps exactly k elements of the domain to every element of
the codomain. For example, the function mapping each ear to its owner is 2-to-1.
Similarly, the function mapping each finger to its owner is 10-to-1, and the function
mapping each finger and toe to its owner is 20-to-1. The general rule is:

Rule 14.4.1 (Division Rule). If f W A! B is k-to-1, then jAj D k � jBj.

For example, suppose A is the set of ears in the room and B is the set of people.
There is a 2-to-1 mapping from ears to people, so by the Division Rule, jAj D
2 � jBj. Equivalently, jBj D jAj=2, expressing what we knew all along: the number
of people is half the number of ears. Unlikely as it may seem, many counting
problems are made much easier by initially counting every item multiple times and
then correcting the answer using the Division Rule. Let’s look at some examples.

14.4.1 Another Chess Problem
In how many different ways can you place two identical rooks on a chessboard
so that they do not share a row or column? A valid configuration is shown in
Figure 14.2(a), and an invalid configuration is shown in Figure 14.2(b).

Let A be the set of all sequences

.r1; c1; r2; c2/

where r1 and r2 are distinct rows and c1 and c2 are distinct columns. Let B be the
set of all valid rook configurations. There is a natural function f from set A to set
B; in particular, f maps the sequence .r1; c1; r2; c2/ to a configuration with one
rook in row r1, column c1 and the other rook in row r2, column c2.
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Figure 14.2 Two ways to place 2 rooks (R) on a chessboard. The configuration
in (b) is invalid because the rooks are in the same column.

But now there’s a snag. Consider the sequences:

.1; a; 8; h/ and .8; h; 1; a/

The first sequence maps to a configuration with a rook in the lower-left corner and
a rook in the upper-right corner. The second sequence maps to a configuration with
a rook in the upper-right corner and a rook in the lower-left corner. The problem is
that those are two different ways of describing the same configuration! In fact, this
arrangement is shown in Figure 14.2(a).

More generally, the function f maps exactly two sequences to every board con-
figuration; f is a 2-to-1 function. Thus, by the quotient rule, jAj D 2 � jBj. Rear-
ranging terms gives:

7/
B

jAj .8 � 2

j j D D :
2 2

On the second line, we’ve computed the size of A using the General Product Rule
just as in the earlier chess problem.

14.4.2 Knights of the Round Table
In how many ways can King Arthur arrange to seat his n different knights at his
round table? A seating defines who sits where. Two seatings are considered to be
the same arrangement if each knight sits between the same two knights in both
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seatings. An equivalent way to say this is that two seatings yield the same arrange-
ment when they yield the same sequence of knights starting at knight number 1
and going clockwise around the table. For example, the following two seatings
determine the same arrangement:

# k1 k

k4"!k2

# 3

k2 k4

k3

"!
k1

A seating is determined by the sequence of knights going clockwise around the
table starting at the top seat. So seatings correspond to permutations of the knights,
and there are nä of them. For example,

k2

.k2; k4; k1; k3/ k

# 
�! 3"!k4

k1

Two seatings determine the same arrangement if they are the same when the
table is rotated so knight 1 is at the top seat. For example with n D 4, there are 4
different sequences that correspond to the seating arrangement:

.k2; k4; k1; k3/ k1

.k4; k1; k3; k2/ �! k4

# 
k3

.k1; k3; k2; k4/

.k3; k2; k4; k1/
"!

k2

This mapping from seating to arrangments is actually an n-to-1 function, since all n

cyclic shifts of the sequence of knights in the seating map to the same arrangement.
Therefore, by the division rule, the number of circular seating arrangements is:

# seatings nä

n
D

n
D .n � 1/ä :
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14.5 Counting Subsets

How many k-element subsets of an n-element set are there? This question arises
all the time in various guises:

✏ In how many ways can I select 5 books from my collection of 100 to bring
on vacation?

✏ How many different 13-card bridge hands can be dealt from a 52-card deck?

✏ In how many ways can I select 5 toppings for my pizza if there are 14 avail-
able toppings?

This number comes up so often that there is a special notation for it:
 

n
!
WWD the number of k-element subsets of an n-element set.

k

The expression n
k is read “n choose k.” Now we can immediately express the

answers to all three

� �
questions above:

✏ I can select 5 books from 100 in
�100

5

�
ways.

✏ There are
�52� different bridge hands.

✏ There are

14.5.1 The Subset

�
13

14
5

�
different 5-topping pizzas, if 14 toppings are available.

Rule
We can derive a simple formula for the n choose k number using the Division Rule.
We do this by mapping any permutation of an n-element set fa1; : : : ; ang into a k-
element subset simply by taking the first k elements of the permutation. That is,
the permutation a1a2 : : : an will map to the set fa1; a2; : : : ; akg.

Notice that any other permutation with the same first k elements a1; : : : ; ak in
any order and the same remaining elements n � k elements in any order will also
map to this set. What’s more, a permutation can only map to fa1; a2; : : : ; akg
if its first k elements are the elements a1; : : : ; ak in some order. Since there are
kä possible permutations of the first k elements and .n � k/ä permutations of the
remaining elements, we conclude from the Product Rule that exactly kä.n � k/ä

permutations of the n-element set map to the particular subset, S . In other words,
the mapping from permutations to k-element subsets is kä.n � k/ä-to-1.
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But we know there are nä permutations of an n-element set, so by the Division
Rule, we conclude that

n
nä D kä.n � k/ä

 
k

!

which proves:

Rule 14.5.1 (Subset Rule). The number of k-element subsets of an n-element set is
 

n

k

!
näD :

kä .n � k/ä

Notice that this works even for 0-element subsets: nä=0änä 1. Here we use the
fact that is a product of 0 terms, which by convention2

D
0ä equals 1.

14.5.2 Bit Sequences
How many n-bit sequences contain exactly k ones? We’ve already seen the straight-
forward bijection between subsets of an n-element set and n-bit sequences. For
example, here is a 3-element subset of fx1; x2; : : : ; x8g and the associated 8-bit
sequence:

f x1; x4; x5 g
. 1; 0; 0; 1; 1; 0; 0; 0 /

Notice that this sequence has exactly 3 ones, each corresponding to an element
of the 3-element subset. More generally, the n-bit sequences corresponding to a
k-element subset will have exactly k ones. So by the Bijection Rule,

n
Corollary 14.5.2. The number of n-bit sequences with exactly k ones is

 
k

!
.

Also, the bijection between selections of flavored donuts and bit sequences of
Lemma 14.1.1 now implies,

Corollary 14.5.3. The number of ways to select n donuts when k flavors are avail-
able is  

nC .k � 1/
:

n

!

2We don’t use it here, but a sum of zero terms equals 0.
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14.6 Sequences with Repetitions

14.6.1 Sequences of Subsets
Choosing a k-element subset of an n-element set is the same as splitting the set
into a pair of subsets: the first subset of size k and the second subset consisting of
the remaining n � k elements. So, the Subset Rule can be understood as a rule for
counting the number of such splits into pairs of subsets.

We can generalize this to a way to count splits into more than two subsets. Let
A be an n-element set and k1; k2; : : : ; km be nonnegative integers whose sum is n.
A .k1; k2; : : : ; km/-split of A is a sequence

.A1; A2; : : : ; Am/

where the Ai are disjoint subsets of A and jAi j D ki for i D 1; : : : ; m.
To count the number of splits we take the same approach as for the Subset

Rule. Namely, we map any permutation a1a2 : : : an of an n-element set A into
a .k1; k2; : : : ; km/-split by letting the 1st subset in the split be the first k1 elements
of the permutation, the 2nd subset of the split be the next k2 elements, . . . , and the
mth subset of the split be the final km elements of the permutation. This map is
a k1ä k2ä � � � kmä-to-1 function from the nä permutations to the .k1; k2; : : : ; km/-
splits of A, so from the Division Rule we conclude the Subset Split Rule:

Definition 14.6.1. For n; k1; : : : ; km 2 N, such that k1Ck2C � � �Ckm D n, define
the multinomial coefficient

 
n

k1; k2; : : : ; km

!
näWWD :

k1ä k2ä : : : kmä

Rule 14.6.2 (Subset Split Rule). The number of .k ; k ; : : : ; k /-splits of an n-
element set is  

n

k1; : : : ; km

!
1 2 m

:

14.6.2 The Bookkeeper Rule
We can also generalize our count of n-bit sequences with k ones to counting se-
quences of n letters over an alphabet with more than two letters. For example,
how many sequences can be formed by permuting the letters in the 10-letter word
BOOKKEEPER?
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Notice that there are 1 B, 2 O’s, 2 K’s, 3 E’s, 1 P, and 1 R in BOOKKEEPER. This
leads to a straightforward bijection between permutations of BOOKKEEPER and
(1,2,2,3,1,1)-splits of f1; 2; : : : ; 10g. Namely, map a permutation to the sequence
of sets of positions where each of the different letters occur.

For example, in the permutation BOOKKEEPER itself, the B is in the 1st posi-
tion, the O’s occur in the 2nd and 3rd positions, K’s in 4th and 5th, the E’s in the
6th, 7th and 9th, P in the 8th, and R is in the 10th position. So BOOKKEEPER
maps to

.f1g; f2; 3g; f4; 5g; f6; 7; 9g; f8g; f10g/:
From this bijection and the Subset Split Rule, we conclude that the number of ways
to rearrange the letters in the word BOOKKEEPER is:

total‚…„ƒletters

10ä

„ƒ‚…1ä 2ä

B’s
„ƒ‚…

O’s

This example generalizes directly

„ƒ‚…2ä „ƒ‚…3ä 1ä

E’s
„ƒ‚… 1ä

K’s P’s
„ƒ‚…

R’s

to an exceptionally useful counting principle
which we will call the

Rule 14.6.3 (Bookkeeper Rule). Let l1; : : : ; lm be distinct elements. The number
of sequences with k1 occurrences of l1, and k2 occurrences of l2, . . . , and km

occurrences of lm is  
k1 C k2 C � � �C km

:
k1; : : : ; km

!

For example, suppose you are planning a 20-mile walk, which should include 5
northward miles, 5 eastward miles, 5 southward miles, and 5 westward miles. How
many different walks are possible?

There is a bijection between such walks and sequences with 5 N’s, 5 E’s, 5 S’s,
and 5 W’s. By the Bookkeeper Rule, the number of such sequences is:

20ä
:

.5ä/4

A Word about Words

Someday you might refer to the Subset Split Rule or the Bookkeeper Rule in front
of a roomful of colleagues and discover that they’re all staring back at you blankly.
This is not because they’re dumb, but rather because we made up the name “Book-
keeper Rule.” However, the rule is excellent and the name is apt, so we suggest
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that you play through: “You know? The Bookkeeper Rule? Don’t you guys know
anything?”

The Bookkeeper Rule is sometimes called the “formula for permutations with
indistinguishable objects.” The size k subsets of an n-element set are sometimes
called k-combinations. Other similar-sounding descriptions are “combinations with
repetition, permutations with repetition, r-permutations, permutations with indis-
tinguishable objects,” and so on. However, the counting rules we’ve taught you are
sufficient to solve all these sorts of problems without knowing this jargon, so we
won’t burden you with it.

14.6.3 The Binomial Theorem
Counting gives insight into one of the basic theorems of algebra. A binomial is a
sum of two terms, such as aC b. Now consider its 4th power, .aC b/4.

By repeatedly using distributivity of products over sums to multiply out this 4th
power expression completely, we get

.aC b/4 D aaaa C aaab C aaba C aabb

C abaa C abab C abba C abbb

C baaa C baab C baba C babb

C bbaa C bbab C bbba C bbbb

Notice that there is one term for every sequence of a’s and b’s. So there are 24

terms, and the number of terms with k copies of and � copies of is:

nä

kä .n k/ä
D�

 
b n k a

n

k

!

by the Bookkeeper Rule. Hence, the coefficient of an�kbk is
�n�. So for n 4k D ,

this means:

4
.aC b/4 D

 !
� a4b0 C

 
4
!
� a3 4

b1

0 1
C
 

2

!
� a2b2 C

 
4

3

!
� a1b3 C

 
4

4

!
� a0b4

In general, this reasoning gives the Binomial Theorem:

Theorem 14.6.4 (Binomial Theorem). For all n 2 N and a; b 2 R:

n

.aC b/n D
k

X
D0

 
n

k

!
an�kbk
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The Binomial Theorem explains why the n choose k number is called a binomial
coefficient.

This reasoning about binomials extends nicely to multinomials, which are sums
of two or more terms. For example, suppose we wanted the coefficient of

bo2k2e3pr

in the expansion of .b C oC k C e C p C r/10. Each term in this expansion is a
product of 10 variables where each variable is one of b, o, k, e, p, or r . Now, the
coefficient of bo2k2e3pr is the number of those terms with exactly 1 b, 2 o’s, 2
k’s, 3 e’s, 1 p, and 1 r . And the number of such terms is precisely the number of
rearrangements of the word BOOKKEEPER:

 
10

!
10ä

:
1; 2; 2; 3; 1; 1

D
1ä 2ä 2ä 3ä 1ä 1ä

This reasoning extends to a general theorem:

Theorem 14.6.5 (Multinomial Theorem). For all n 2 N,

n
.z1 C z2 C � � �C k kz n

!
1

m/ D
X  

z z 2

2 � � � zkm
1 m :

k ; k2; : : : ; km
k

k
2 1

1;:::;km N
1C���CkmDn

But you’ll be better off remembering the reasoning behind the Multinomial The-
orem rather than this cumbersome formal statement.

14.7 Counting Practice: Poker Hands

Five-Card Draw is a card game in which each player is initially dealt a hand con-
sisting of 5 cards from a deck of 52 cards.3 The number of different hands in

3There are 52 cards in a standard deck. Each card has a suit and a rank. There are four suits:

� (spades) ~ (hearts) | (clubs) } (diamonds)

And there are 13 ranks, listed here from lowest to highest:

Ace Jack Queen King
A ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; J ; Q ; K :

Thus, for example, 8~ is the 8 of hearts and A� is the ace of spades.
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Five-Card Draw is the number of 5-element subsets of a 52-element set, which is
 

52
!
D 2; 598; 960:

5

Let’s get some counting practice by working out the number of hands with various
special properties.

14.7.1 Hands with a Four-of-a-Kind
A Four-of-a-Kind is a set of four cards with the same rank. How many different
hands contain a Four-of-a-Kind? Here are a couple examples:

f8�; 8}; Q~; 8~; 8|g
fA|; 2|; 2~; 2}; 2�g

As usual, the first step is to map this question to a sequence-counting problem. A
hand with a Four-of-a-Kind is completely described by a sequence specifying:

1. The rank of the four cards.

2. The rank of the extra card.

3. The suit of the extra card.

Thus, there is a bijection between hands with a Four-of-a-Kind and sequences con-
sisting of two distinct ranks followed by a suit. For example, the three hands above
are associated with the following sequences:

.8; Q;~/$ f 8�; 8}; 8~; 8|; Q~g
.2; A;|/$ f2|; 2~; 2}; 2�; A|g

Now we need only count the sequences. There are 13 ways to choose the first rank,
12 ways to choose the second rank, and 4 ways to choose the suit. Thus, by the
Generalized Product Rule, there are 13 � 12 � 4 D 624 hands with a Four-of-a-Kind.
This means that only 1 hand in about 4165 has a Four-of-a-Kind. Not surprisingly,
Four-of-a-Kind is considered to be a very good poker hand!
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14.7.2 Hands with a Full House
A Full House is a hand with three cards of one rank and two cards of another rank.
Here are some examples:

f2�; 2|; 2}; J|; J}g
f5}; 5|; 5~; 7~; 7|g

Again, we shift to a problem about sequences. There is a bijection between Full
Houses and sequences specifying:

1. The rank of the triple, which can be chosen in 13 ways.

2. The suits of the triple, which can be selected in
�4
3

3.

�
ways.

The rank of the pair, which can be chosen in 12 ways.

4. The suits of the pair, which can be selected in
�4
2

�
ways.

The example hands correspond to sequences as shown below:

.2; f�;|;}g; J; f|;}g/$ f2�; 2|; 2}; J|; J}g
.5; f};|;~g; 7; f~;|g/$ f5}; 5|; 5~; 7~; 7|g

By the Generalized Product Rule, the number of Full Houses is:

13 �
 

4

3

!
� 12 �

 
4

2

!
:

We’re on a roll—but we’re about to hit a speed bump.

14.7.3 Hands with Two Pairs
How many hands have Two Pairs; that is, two cards of one rank, two cards of
another rank, and one card of a third rank? Here are examples:

f3}; 3�; Q}; Q~; A|g
f9~; 9}; 5~; 5|; K�g

Each hand with Two Pairs is described by a sequence consisting of:

1. The rank of the first pair, which can be chosen in 13 ways.

2. The suits of the first pair, which can be selected
�4
2

�
ways.
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3. The rank of the second pair, which can be chosen in 12 ways.

4. The suits of the second pair, which can be selected in 4
2 ways.

5. The rank of the extra card, which can be chosen in 11

�

w

�

ays.

6. The suit of the extra card, which can be selected in 4
1 D 4 ways.

Thus, it might appear that the number of hands with Two P

�

airs

�

is:

13 �
 

4

2

!
� 12 �

 
4

2

!
� 11 � 4:

Wrong answer! The problem is that there is not a bijection from such sequences to
hands with Two Pairs. This is actually a 2-to-1 mapping. For example, here are the
pairs of sequences that map to the hands given above:

.3; f};�g; Q; f};~g; A;|/ &
f3}; 3�; Q}; Q~; A|g

.Q; f};~g; 3; f};�g; A;|/ %

.9; f~;}g; 5; f~;|g; K;�/ &
f9~; 9}; 5~; 5|; K�g

.5; f~;|g; 9; f~;}g; K;�/ %

The problem is that nothing distinguishes the first pair from the second. A pair of
5’s and a pair of 9’s is the same as a pair of 9’s and a pair of 5’s. We avoided this
difficulty in counting Full Houses because, for example, a pair of 6’s and a triple of
kings is different from a pair of kings and a triple of 6’s.

We ran into precisely this difficulty last time, when we went from counting ar-
rangements of different pieces on a chessboard to counting arrangements of two
identical rooks. The solution then was to apply the Division Rule, and we can do
the same here. In this case, the Division rule says there are twice as many sequences
as hands, so the number of hands with Two Pairs is actually:

13 �
�4� � 12 �

�4� � 11 � 42 2 :
2

Another Approach

The preceding example was disturbing! One could easily overlook the fact that the
mapping was 2-to-1 on an exam, fail the course, and turn to a life of crime. You
can make the world a safer place in two ways:
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1. Whenever you use a mapping f W A! B to translate one counting problem
to another, check that the same number of elements in A are mapped to each
element in B . If k elements of A map to each of element of B , then apply
the Division Rule using the constant k.

2. As an extra check, try solving the same problem in a different way. Multiple
approaches are often available—and all had better give the same answer!
(Sometimes different approaches give answers that look different, but turn
out to be the same after some algebra.)

We already used the first method; let’s try the second. There is a bijection be-
tween hands with two pairs and sequences that specify:

1. The ranks of the two pairs, which can be chosen in
�13

2

�
ways.

2. The suits of the lower-rank pair, which can be selected in

3.

�4
2

�
ways.

The suits of the higher-rank pair, which can be selected in 4
2 ways.

4. The rank of the extra card, which can be chosen in 11
� �

ways.

� �

5. The suit of the extra card, which can be selected in 4
1 D 4 ways.

For example, the following sequences and hands correspond:

.f3; Qg; f};�g; f};~g; A;|/$ f3}; 3�; Q}; Q~; A|g
.f9; 5g; f~;|g; f~;}g; K;�/$ f9~; 9}; 5~; 5|; K�g

Thus, the number of hands with
 !

two pairs is:

13 4

2

 
4�
2

!
�
 

2

!
� 11 � 4:

This is the same answer we got before, though in a slightly different form.

14.7.4 Hands with Every Suit
How many hands contain at least one card from every suit? Here is an example of
such a hand:

f7}; K|; 3}; A~; 2�g
Each such hand is described by a sequence that specifies:

1. The ranks of the diamond, the club, the heart, and the spade, which can be
selected in 13 � 13 � 13 � 13 D 134 ways.
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2. The suit of the extra card, which can be selected in 4 ways.

3. The rank of the extra card, which can be selected in 12 ways.

For example, the hand above is described by the sequence:

.7; K; A; 2;}; 3/$ f7}; K|; A~; 2�; 3}g:

Are there other sequences that correspond to the same hand? There is one more!
We could equally well regard either the 3} or the 7} as the extra card, so this
is actually a 2-to-1 mapping. Here are the two sequences corresponding to the
example hand:

.7; K; A; 2;}; 3/ &
f7}; K|; A~; 2�; 3}g

.3; K; A; 2;}; 7/ %

Therefore, the number of hands with every suit is:

134 � 4 � 12
:

2
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