
“mcs” — 2015/5/18 — 1:43 — page 528 — #536

13.7 Asymptotic Notation

Asymptotic notation is a shorthand used to give a quick measure of the behavior
of a function f .n/ as n grows large. For example, the asymptotic notation ⇠ of
Definition 13.4.2 is a binary relation indicating that two functions grow at the same
rate. There is also a binary relation “little oh” indicating that one function grows at
a significantly slower rate than another and “Big Oh” indicating that one function
grows not much more rapidly than another.

13.7.1 Little O

Definition 13.7.1. For functions f; g W R ! R, with g nonnegative, we say f is
asymptotically smaller than g, in symbols,

f .x/ D o.g.x//;

iff
lim f .x/=g.x/ D 0:

x!1

For example, 1000x1:9 D o.x2/, because 1000x1:9=x2 D 1000=x0:1 and since
x0:1 goes to infinity with x and 1000 is constant, we have limx!1 1000x1:9=x2

0. This argument generalizes directly to yield

Lemma 13.7.2. xa D o.xb/ for all nonnegative constants a < b.

Using the familiar fact that log x < x for all x > 1, we can prove

Lemma 13.7.3. log x D o.x✏/ for all ✏ > 0.

Proof. Choose ✏ > ı > 0 and let x D zı in the inequality log x < x. This implies

log z < zı =ı D o.z ✏/ by Lemma 13.7.2: (13.28)

⌅

Corollary 13.7.4. xb D o.ax / for any a; b 2 R with a > 1.

Lemma 13.7.3 and Corollary 13.7.4 can also be proved using l’Hôpital’s Rule or
the Maclaurin Series for log x and ex . Proofs can be found in most calculus texts.

D

529

“mcs” — 2015/5/18 — 1:43 — page 529 — #537

13.7. Asymptotic Notation

13.7.2 Big O

Big O is the most frequently used asymptotic notation. It is used to give an upper
bound on the growth of a function, such as the running time of an algorithm. There
is a standard definition of Big Oh given below in 13.7.9, but we’ll begin with an
alternative definition that makes apparent several basic properties of Big Oh.

Definition 13.7.5. Given functions f; g W R ! R with g nonnegative, we say that

f D O.g/

iff
lim sup jf .x/j =g.x/ < 1:
x!1

Here we’re using the technical notion of limit superior6 instead of just limit. But
because limits and lim sup’s are the same when limits exist, this formulation makes
it easy to check basic properties of Big Oh. We’ll take the following Lemma for
granted.

Lemma 13.7.6. If a function f W R ! R has a finite or infinite limit as its argument
approaches infinity, then its limit and limit superior are the same.

Now Definition 13.7.5 immediately implies:

Lemma 13.7.7. If f D o.g/ or f ⇠ g, then f D O.g/.

Proof. lim f =g D 0 or lim f =g D 1 implies lim f =g < 1, so by Lemma 13.7.6,
lim sup f =g < 1. ⌅

Note that the converse of Lemma 13.7.7 is not true. For example, 2x D O.x/,
but 2x 6 o.x/.⇠ x and 2x

We also have:

Lemma 13.7.8. If f D o.g/, then it is not true that g D O.f /.

Proof.
g.x/ 1 1

lim D D1;
x!1 f .x/ limx!1 f .x/=g.x/ 0

so by Lemma 13.7.6, g ¤ O.f /. ⌅

6The precise definition of lim sup is

lim sup h.x/ lim luby�x h.y/;
x!1x!1

where “lub” abbreviates “least upper bound.”

¤

D

WWD

530

“mcs” — 2015/5/18 — 1:43 — page 530 — #538

Chapter 13 Sums and Asymptotics

We need lim sup’s in Definition 13.7.5 to cover cases when limits don’t exist. For
example, if f .x/=g.x/ oscillates between 3 and 5 as x grows, then limx!1 f .x/=g.x/
does not exist, but f D O.g/ because lim supx!1 f .x/=g.x/ D 5.

An equivalent, more usual formulation of big O does not mention lim sup’s:

Definition 13.7.9. Given functions f; g W R ! R with g nonnegative, we say

f D O.g/

iff there exists a constant c � 0 and an x0 such that for all x � x0, jf .x/j  cg.x/.

This definition is rather complicated, but the idea is simple: f .x/ D O.g.x//
means f .x/ is less than or equal to g.x/, except that we’re willing to ignore a
constant factor, namely, c, and to allow exceptions for small x, namely, x < x0.
So in the case that f .x/=g.x/ oscillates between 3 and 5, f D O.g/ according to
Definition 13.7.9 because f  5g.

Proposition 13.7.10. 100x2 D O.x2/.

Proof. Choose c D 100 and x0 1. Then the proposition holds, since for all
x � 1, 100x2  100x2 . ⌅

ˇ̌ ˇ̌

Proposition 13.7.11. x2 C 100x C 10 D O.x2/.

Proof. .x2 C100x C10/=x2 D 1C100=x C10=x2 and so its limit as x approaches
infinity is 1C0C0 D 1. So in fact, x2C100xC10 ⇠ x2, and therefore x2C100x

10 D O.x2/. Indeed, it’s conversely true that x2 D O.x2 C 100x C 10/. ⌅

Proposition 13.7.11 generalizes to an arbitrary polynomial:

Proposition 13.7.12. akxk C ak-1xk-1 C . . . C a1x C a0 D O.xk/.

We’ll omit the routine proof.
Big O notation is especially useful when describing the running time of an al­

gorithm. For example, the usual algorithm for multiplying n ⇥ n matrices uses a
number of operations proportional to n3 in the worst case. This fact can be ex­
pressed concisely by saying that the running time is O.n3/. So this asymptotic
notation allows the speed of the algorithm to be discussed without reference to
constant factors or lower-order terms that might be machine specific. It turns out
that there is another matrix multiplication procedure that uses O.n2:55/ operations.
The fact that this procedure is asymptotically faster indicates that it involves new
ideas that go beyond a simply more efficient implementation of the O.n3/ method.

Of course the asymptotically faster procedure will also definitely be much more
efficient on large enough matrices, but being asymptotically faster does not mean

D

C

531

“mcs” — 2015/5/18 — 1:43 — page 531 — #539

13.7. Asymptotic Notation

that it is a better choice. The O.n2:55/-operation multiplication procedure is almost
never used in practice because it only becomes more efficient than the usual O.n3/
procedure on matrices of impractical size.7

13.7.3 Theta

Sometimes we want to specify that a running time T .n/ is precisely quadratic up to
constant factors (both upper bound and lower bound). We could do this by saying
that T .n/ D O.n2/ and n2 D O.T .n//, but rather than say both, mathematicians
have devised yet another symbol, ‚, to do the job.

Definition 13.7.13.

f D ‚.g/ iff f D O.g/ and g D O.f /:

The statement f D ‚.g/ can be paraphrased intuitively as “f and g are equal
to within a constant factor.”

The Theta notation allows us to highlight growth rates and suppress distracting
factors and low-order terms. For example, if the running time of an algorithm is

T .n/ D 10n3 � 20n2 C 1;

then we can more simply write

T .n/ D ‚.n 3/:

In this case, we would say that T is of order n3 or that T .n/ grows cubically, which
is often the main thing we really want to know. Another such example is

.2:7x113 C x9 � 86/4

⇡23x-7 C p � 1:083x D ‚.3x /:
x

Just knowing that the running time of an algorithm is ‚.n3/, for example, is
useful, because if n doubles we can predict that the running time will by and large8

increase by a factor of at most 8 for large n. In this way, Theta notation preserves in­
formation about the scalability of an algorithm or system. Scalability is, of course,
a big issue in the design of algorithms and systems.

7It is even conceivable that there is an O.n2/ matrix multiplication procedure, but none is known.
8Since ‚.n3/ only implies that the running time, T .n/, is between cn3 and dn3 for constants

0 < c < d , the time T .2n/ could regularly exceed T .n/ by a factor as large as 8d=c. The factor is
3sure to be close to 8 for all large n only if T .n/ ⇠ n .

�

532

“mcs” — 2015/5/18 — 1:43 — page 532 — #540

Chapter 13 Sums and Asymptotics

13.7.4 Pitfalls with Asymptotic Notation

There is a long list of ways to make mistakes with asymptotic notation. This section
presents some of the ways that big O notation can lead to trouble. With minimal
effort, you can cause just as much chaos with the other symbols.

The Exponential Fiasco

Sometimes relationships involving big O are not so obvious. For example, one
might guess that 4x D O.2x / since 4 is only a constant factor larger than 2. This
reasoning is incorrect, however; 4x actually grows as the square of 2x .

Constant Confusion

Every constant is O.1/. For example, 17 D O.1/. This is true because if we let
f .x/ D 17 and g.x/ D 1, then there exists a c > 0 and an x0 such that jf .x/j 
cg.x/. In particular, we could choose c = 17 and x0 D 1, since j17j  17 . 1 for all
x 1. We can construct a false theorem that exploits this fact.

False Theorem 13.7.14.
nX

i D O.n/
iD1

Bogus proof. Define f .n/ DPn
iD1 i D 1 C2 C3 C . . . Cn. Since we have shown

that every constant i is O.1/, f .n/ D O.1/ CO.1/ C . . . CO.1/ D O.n/. ⌅

Of course in reality
Pn

iD1 i D n.n C 1/=2 ¤ O.n/.
The error stems from confusion over what is meant in the statement i D O.1/.

For any constant i 2 N it is true that i D O.1/. More precisely, if f is any constant
function, then f D O.1/. But in this False Theorem, i is not constant—it ranges
over a set of values 0; 1; : : : ; n that depends on n.

And anyway, we should not be adding O.1/’s as though they were numbers. We
never even defined what O.g/ means by itself; it should only be used in the context
“f D O.g/” to describe a relation between functions f and g.

Equality Blunder

The notation f D O.g/ is too firmly entrenched to avoid, but the use of “=” is
regrettable. For example, if f D O.g/, it seems quite reasonable to write O.g/
f . But doing so might tempt us to the following blunder: because 2n D O.n/, we
can say O.n/ D 2n. But n D O.n/, so we conclude that n D O.n/ D 2n, and
therefore n D 2n. To avoid such nonsense, we will never write “O.f / D g.”

�

D

“mcs” — 2015/5/18 — 1:43 — page 533 — #541

13.7. Asymptotic Notation 533

Similarly, you will often see statements like

Hn D ln.n/ C y CO

✓
1
◆

n

or p
2⇡ n

⇣n⌘n
nä D .1 C o.1//

e
In such cases, the true meaning is

Hn D ln.n/ C y C f .n/

for some f .n/ where f .n/ D O.1=n/, and
p ⇣n⌘n

nä D .1 C g.n// 2⇡ n
e

where g.n/ D o.1/. These last transgressions are OK as long as you (and your
reader) know what you mean.

Operator Application Blunder

It’s tempting to assume that familiar operations preserve asymptotic relations, but
it ain’t necessarily so. For example, f ⇠ g in general does not even imply that
3f D ‚ .3g /. On the other hand, some operations preserve and even strengthen
asymptotic relations, for example,

f D ‚.g/ IMPLIES ln f ⇠ ln g:

See Problem 13.24.

13.7.5 Omega (Optional)
Sometimes people incorrectly use Big Oh in the context of a lower bound. For
example, they might say, “The running time, T .n/, is at least O.n2/.” This is
another blunder! Big Oh can only be used for upper bounds. The proper way to
express the lower bound would be

n 2 D O.T .n//:

The lower bound can also be described with another special notation “big Omega.”

Definition 13.7.15. Given functions f; g W R ! R with f nonnegative, define

f D �.g/

to mean
g D O.f /:

534

“mcs” — 2015/5/18 — 1:43 — page 534 — #542

Chapter 13 Sums and Asymptotics

p
For example, x2 D �.x/, 2x D �.x2/, and x=100 D �.100x C x/.
So if the running time of your algorithm on inputs of size n is T .n/, and you

want to say it is at least quadratic, say

T .n/ D �.n 2/:

There is a similar “little omega” notation for lower bounds corresponding to little
o:

Definition 13.7.16. For functions f; g W R ! R with f nonnegative, define

f D !.g/

to mean
g D o.f /:
p

For example, x1:5 D !.x/ and x D !.ln2.x//.
The little omega symbol is not as widely used as the other asymptotic symbols

we defined.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

