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13.7 Asymptotic Notation 

Asymptotic notation is a shorthand used to give a quick measure of the behavior 
of a function f .n/ as n grows large. For example, the asymptotic notation ⇠ of 
Definition 13.4.2 is a binary relation indicating that two functions grow at the same 
rate. There is also a binary relation “little oh” indicating that one function grows at 
a significantly slower rate than another and “Big Oh” indicating that one function 
grows not much more rapidly than another. 

13.7.1 Little O 

Definition 13.7.1. For functions f; g W R ! R, with g nonnegative, we say f is 
asymptotically smaller than g, in symbols, 

f .x/ D o.g.x//; 

iff 
lim f .x/=g.x/ D 0: 

x!1 

For example, 1000x1:9 D o.x2/, because 1000x1:9=x2 D 1000=x0:1 and since 
x0:1 goes to infinity with x and 1000 is constant, we have limx!1 1000x1:9=x2 

0. This argument generalizes directly to yield 

Lemma 13.7.2. xa D o.xb/ for all nonnegative constants a < b. 

Using the familiar fact that log x < x  for all x > 1, we can prove 

Lemma 13.7.3. log x D o.x✏/ for all ✏  > 0. 

Proof. Choose ✏  > ı > 0  and let x D zı in the inequality log x < x. This implies 

log z < zı =ı D o.z ✏/ by Lemma 13.7.2: (13.28) 

⌅ 

Corollary 13.7.4. xb D o.ax / for any a; b 2 R with a > 1. 

Lemma 13.7.3 and Corollary 13.7.4 can also be proved using l’Hôpital’s Rule or 
the Maclaurin Series for log x and ex . Proofs can be found in most calculus texts. 

D
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13.7.2 Big O 

Big O is the most frequently used asymptotic notation. It is used to give an upper 
bound on the growth of a function, such as the running time of an algorithm. There 
is a standard definition of Big Oh given below in 13.7.9, but we’ll begin with an 
alternative definition that makes apparent several basic properties of Big Oh. 

Definition 13.7.5. Given functions f; g W R ! R with g nonnegative, we say that 

f D O.g/ 

iff 
lim sup jf .x/j =g.x/ < 1: 
x!1 

Here we’re using the technical notion of limit superior6 instead of just limit. But 
because limits and lim sup’s are the same when limits exist, this formulation makes 
it easy to check basic properties of Big Oh. We’ll take the following Lemma for 
granted. 

Lemma 13.7.6. If a function f W R ! R has a finite or infinite limit as its argument 
approaches infinity, then its limit and limit superior are the same. 

Now Definition 13.7.5 immediately implies: 

Lemma 13.7.7. If f D o.g/ or f ⇠ g, then f D O.g/. 

Proof. lim f =g D 0 or lim f =g D 1 implies lim f =g < 1, so by Lemma 13.7.6, 
lim sup f =g < 1. ⌅ 

Note that the converse of Lemma 13.7.7 is not true. For example, 2x D O.x/, 
but 2x 6 o.x/.⇠ x and 2x 

We also have:
 

Lemma 13.7.8. If f D o.g/, then it is not true that g D O.f /. 

Proof. 
g.x/ 1 1

lim D D1; 
x!1 f .x/ limx!1 f .x/=g.x/ 0 

so by Lemma 13.7.6, g ¤ O.f /. ⌅ 

6The precise definition of lim sup is 

lim sup h.x/ lim luby�x h.y/; 
x!1x!1 

where “lub” abbreviates “least upper bound.” 

¤
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We need lim sup’s in Definition 13.7.5 to cover cases when limits don’t exist. For 
example, if f .x/=g.x/ oscillates between 3 and 5 as x grows, then limx!1 f .x/=g.x/ 
does not exist, but f D O.g/ because lim supx!1 f .x/=g.x/ D 5. 

An equivalent, more usual formulation of big O does not mention lim sup’s: 

Definition 13.7.9. Given functions f; g W R ! R with g nonnegative, we say 

f D O.g/ 

iff there exists a constant c � 0 and an x0 such that for all x � x0, jf .x/j  cg.x/. 

This definition is rather complicated, but the idea is simple: f .x/ D O.g.x// 
means f .x/ is less than or equal to g.x/, except that we’re willing to ignore a 
constant factor, namely, c, and to allow exceptions for small x, namely, x < x0. 
So in the case that f .x/=g.x/ oscillates between 3 and 5, f D O.g/ according to 
Definition 13.7.9 because f  5g. 

Proposition 13.7.10. 100x2 D O.x2/. 

Proof. Choose c D 100 and x0 1. Then the proposition holds, since for all 
x � 1, 100x2  100x2 . ⌅

ˇ̌ ˇ̌

Proposition 13.7.11. x2 C 100x C 10 D O.x2/. 

Proof. .x2 C100x C10/=x2 D 1C100=x C10=x2 and so its limit as x approaches 
infinity is 1C0C0 D 1. So in fact, x2C100xC10 ⇠ x2, and therefore x2C100x

10 D O.x2/. Indeed, it’s conversely true that x2 D O.x2 C 100x C 10/. ⌅ 

Proposition 13.7.11 generalizes to an arbitrary polynomial: 

Proposition 13.7.12. akxk C ak-1xk-1 C . . . C a1x C a0 D O.xk/. 

We’ll omit the routine proof. 
Big O notation is especially useful when describing the running time of an al­

gorithm. For example, the usual algorithm for multiplying n ⇥ n matrices uses a 
number of operations proportional to n3 in the worst case. This fact can be ex­
pressed concisely by saying that the running time is O.n3/. So this asymptotic 
notation allows the speed of the algorithm to be discussed without reference to 
constant factors or lower-order terms that might be machine specific. It turns out 
that there is another matrix multiplication procedure that uses O.n2:55/ operations. 
The fact that this procedure is asymptotically faster indicates that it involves new 
ideas that go beyond a simply more efficient implementation of the O.n3/ method. 

Of course the asymptotically faster procedure will also definitely be much more 
efficient on large enough matrices, but being asymptotically faster does not mean 

D
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that it is a better choice. The O.n2:55/-operation multiplication procedure is almost 
never used in practice because it only becomes more efficient than the usual O.n3/ 
procedure on matrices of impractical size.7 

13.7.3 Theta 

Sometimes we want to specify that a running time T .n/ is precisely quadratic up to 
constant factors (both upper bound and lower bound). We could do this by saying 
that T .n/ D O.n2/ and n2 D O.T .n//, but rather than say both, mathematicians 
have devised yet another symbol, ‚, to do the job. 

Definition 13.7.13. 

f D ‚.g/ iff f D O.g/ and g D O.f /: 

The statement f D ‚.g/ can be paraphrased intuitively as “f and g are equal 
to within a constant factor.” 

The Theta notation allows us to highlight growth rates and suppress distracting 
factors and low-order terms. For example, if the running time of an algorithm is 

T .n/ D 10n3 � 20n2 C 1; 

then we can more simply write 

T .n/ D ‚.n 3/: 

In this case, we would say that T is of order n3 or that T .n/ grows cubically, which 
is often the main thing we really want to know. Another such example is 

.2:7x113 C x9 � 86/4 

⇡23x-7 C p � 1:083x D ‚.3x /: 
x 

Just knowing that the running time of an algorithm is ‚.n3/, for example, is 
useful, because if n doubles we can predict that the running time will by and large8 

increase by a factor of at most 8 for large n. In this way, Theta notation preserves in­
formation about the scalability of an algorithm or system. Scalability is, of course, 
a big issue in the design of algorithms and systems. 

7It is even conceivable that there is an O.n2/ matrix multiplication procedure, but none is known. 
8Since ‚.n3/ only implies that the running time, T .n/, is between cn3 and dn3 for constants 

0 < c < d  , the time T .2n/ could regularly exceed T .n/ by a factor as large as 8d=c. The factor is 
3sure to be close to 8 for all large n only if T .n/ ⇠ n . 
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13.7.4 Pitfalls with Asymptotic Notation 

There is a long list of ways to make mistakes with asymptotic notation. This section 
presents some of the ways that big O notation can lead to trouble. With minimal 
effort, you can cause just as much chaos with the other symbols. 

The Exponential Fiasco 

Sometimes relationships involving big O are not so obvious. For example, one 
might guess that 4x D O.2x / since 4 is only a constant factor larger than 2. This 
reasoning is incorrect, however; 4x actually grows as the square of 2x . 

Constant Confusion 

Every constant is O.1/. For example, 17 D O.1/. This is true because if we let 
f .x/ D 17 and g.x/ D 1, then there exists a c > 0  and an x0 such that jf .x/j  
cg.x/. In particular, we could choose c = 17 and x0 D 1, since j17j  17 . 1 for all 
x 1. We can construct a false theorem that exploits this fact. 

False Theorem 13.7.14. 
nX

i D O.n/ 
iD1 

Bogus proof. Define f .n/ DPn
iD1 i D 1 C2 C3 C . . .  Cn. Since we have shown 

that every constant i is O.1/, f .n/ D O.1/ CO.1/ C . . .  CO.1/ D O.n/. ⌅ 

Of course in reality 
Pn

iD1 i D n.n C 1/=2 ¤ O.n/. 
The error stems from confusion over what is meant in the statement i D O.1/. 

For any constant i 2 N it is true that i D O.1/. More precisely, if f is any constant 
function, then f D O.1/. But in this False Theorem, i is not constant—it ranges 
over a set of values 0; 1; : : : ; n that depends on n. 

And anyway, we should not be adding O.1/’s as though they were numbers. We 
never even defined what O.g/ means by itself; it should only be used in the context 
“f D O.g/” to describe a relation between functions f and g. 

Equality Blunder 

The notation f D O.g/ is too firmly entrenched to avoid, but the use of “=” is 
regrettable. For example, if f D O.g/, it seems quite reasonable to write O.g/ 
f . But doing so might tempt us to the following blunder: because 2n D O.n/, we 
can say O.n/ D 2n. But n D O.n/, so we conclude that n D O.n/ D 2n, and 
therefore n D 2n. To avoid such nonsense, we will never write “O.f / D g.” 

�
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Similarly, you will often see statements like 

Hn D ln.n/ C y CO 

✓ 
1 
◆ 

n 

or p
2⇡ n 

⇣n⌘n 
nä D .1 C o.1//

e 
In such cases, the true meaning is 

Hn D ln.n/ C y C f .n/ 

for some f .n/ where f .n/ D O.1=n/, and 
p ⇣n⌘n 

nä D .1 C g.n// 2⇡ n 
e 

where g.n/ D o.1/. These last transgressions are OK as long as you (and your 
reader) know what you mean. 

Operator Application Blunder 

It’s tempting to assume that familiar operations preserve asymptotic relations, but 
it ain’t necessarily so. For example, f ⇠ g in general does not even imply that 
3f D ‚ .3g /. On the other hand, some operations preserve and even strengthen 
asymptotic relations, for example, 

f D ‚.g/ IMPLIES ln f ⇠ ln g: 

See Problem 13.24. 

13.7.5 Omega (Optional) 
Sometimes people incorrectly use Big Oh in the context of a lower bound. For 
example, they might say, “The running time, T .n/, is at least O.n2/.” This is 
another blunder! Big Oh can only be used for upper bounds. The proper way to 
express the lower bound would be 

n 2 D O.T .n//: 

The lower bound can also be described with another special notation “big Omega.” 

Definition 13.7.15. Given functions f; g W R ! R with f nonnegative, define 

f D �.g/ 

to mean 
g D O.f /: 
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p
For example, x2 D �.x/, 2x D �.x2/, and x=100 D �.100x C x/. 
So if the running time of your algorithm on inputs of size n is T .n/, and you 

want to say it is at least quadratic, say 

T .n/ D �.n 2/: 

There is a similar “little omega” notation for lower bounds corresponding to little 
o: 

Definition 13.7.16. For functions f; g W R ! R with f nonnegative, define 

f D !.g/ 

to mean 
g D o.f /: 
p

For example, x1:5 D !.x/ and x D !.ln2.x//. 
The little omega symbol is not as widely used as the other asymptotic symbols 

we defined. 
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