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8.11 RSA Public Key Encryption

Turing’s code did not work as he hoped. However, his essential idea—using num-
ber theory as the basis for cryptography—succeeded spectacularly in the decades
after his death.

In 1977, Ronald Rivest, Adi Shamir, and Leonard Adleman at MIT proposed a
highly secure cryptosystem, called RSA, based on number theory. The purpose of
the RSA scheme is to transmit secret messages over public communication chan-
nels. As with Turing’s codes, the messages transmitted are nonnegative integers of
some fixed size.

Moreover, RSA has a major advantage over traditional codes: the sender and
receiver of an encrypted message need not meet beforehand to agree on a secret key.
Rather, the receiver has both a private key, which they guard closely, and a public
key, which they distribute as widely as possible. A sender wishing to transmit a
secret message to the receiver encrypts their message using the receiver’s widely-
distributed public key. The receiver can then decrypt the received message using
their closely held private key. The use of such a public key cryptography system
allows you and Amazon, for example, to engage in a secure transaction without
meeting up beforehand in a dark alley to exchange a key.

Interestingly, RSA does not operate modulo a prime, as Turing’s hypothetical
Version 2.0 may have, but rather modulo the product of rwo large primes—typically
primes that are hundreds of digits long. Also, instead of encrypting by multiplica-
tion with a secret key, RSA exponentiates to a secret power—which is why Euler’s
Theorem is central to understanding RSA.

The scheme for RSA public key encryption appears in the box.

If the message m is relatively prime to n, then a simple application of Euler’s
Theorem implies that this way of decoding the encrypted message indeed repro-
duces the original unencrypted message. In fact, the decoding always works—even
in (the highly unlikely) case that m is not relatively prime to n. The details are
worked out in Problem 8.81.
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The RSA Cryptosystem

A Receiver who wants to be able to receive secret numerical messages creates a
private key, which they keep secret, and a public key, which they make publicly
available. Anyone with the public key can then be a Sender who can publicly
send secret messages to the Receiver—even if they have never communicated or
shared any information besides the public key.

Here is how they do it:

Beforehand The Receiver creates a public key and a private key as follows.

1. Generate two distinct primes, p and ¢g. These are used to generate the
private key, and they must be kept hidden. (In current practice, p and
q are chosen to be hundreds of digits long.)

2. Letn ::= pq.

3. Select an integer e € [0..n) such that gcd(e, (p — 1)(g — 1)) = 1.
The public key is the pair (e, n). This should be distributed widely.

4. Let the private key d € [0..n) be the inverse of e in the ring
Z(p—1)(g—1)- This private key can be found using the Pulverizer. The
private key d should be kept hidden!

Encoding To transmit a message m € [0..n) to Receiver, a Sender uses the
public key to encrypt m into a numerical message

m = m¢ (Zy).
The Sender can then publicly transmit 77 to the Receiver.

Decoding The Receiver decrypts message /m back to message m using the pri-
vate key:

m = m¢ (Zy).
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Why is RSA thought to be secure? It would be easy to figure out the private
key d if you knew p and g—you could do it the same way the Receiver does using
the Pulverizer. But assuming the conjecture that it is hopelessly hard to factor a
number that is the product of two primes with hundreds of digits, an effort to factor
n is not going to break RSA.

Could there be another approach to reverse engineer the private key d from the
public key that did not involve factoring n? Not really. It turns out that given just
the private and the public keys, it is easy to factor n12 (a proof of this is sketched
in Problem 8.83). So if we are confident that factoring is hopelessly hard, then we
can be equally confident that finding the private key just from the public key will
be hopeless.

But even if we are confident that an RSA private key won’t be found, this doesn’t
rule out the possibility of decoding RSA messages in a way that sidesteps the pri-
vate key. It is an important unproven conjecture in cryptography that any way of
cracking RSA—not just by finding the secret key—would imply the ability to fac-
tor. This would be a much stronger theoretical assurance of RSA security than is
presently known.

But the real reason for confidence is that RSA has withstood all attacks by the
world’s most sophisticated cryptographers for nearly 40 years. Despite decades of
these attacks, no significant weakness has been found. That’s why the mathemat-
ical, financial, and intelligence communities are betting the family jewels on the
security of RSA encryption.

You can hope that with more studying of number theory, you will be the first to
figure out how to do factoring quickly and, among other things, break RSA. But
be further warned that even Gauss worked on factoring for years without a lot to
show for his efforts—and if you do figure it out, you might wind up meeting some
humorless fellows working for a Federal agency in charge of security. ...

8.12 What has SAT got to do with it?

So why does society, or at least everybody’s secret codes, fall apart if there is an
efficient test for satisfiability (SAT), as we claimed in Section 3.5? To explain this,
remember that RSA can be managed computationally because multiplication of two
primes is fast, but factoring a product of two primes seems to be overwhelmingly
demanding.

131 practice, for this reason, the public and private keys should be randomly chosen so that neither
is “too small.”
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Let’s begin with the observation from Section 3.2 that a digital circuit can be
described by a bunch of propositional formulas of about the same total size as the
circuit. So testing circuits for satisfiability is equivalent to the SAT problem for
propositional formulas (see Problem 3.18).

Now designing digital multiplication circuits is completely routine. We can eas-
ily build a digital “product checker” circuit out of AND, OR, and NOT gates with 1
output wire and 4n digital input wires. The first n inputs are for the binary repre-
sentation of an integer i, the next n inputs for the binary representation of an integer
Jj , and the remaining 2 inputs for the binary representation of an integer k. The
output of the circuitis 1 iff ij = k and i, j > 1. A straightforward design for such
a product checker uses proportional to n? gates.

Now here’s how to factor any number m with a length 2n binary representation
using a SAT solver. First, fix the last 2n digital inputs—the ones for the binary
representation of k—so that k equals m.

Next, set the first of the n digital inputs for the representation of 7 to be 1. Do a
SAT test to see if there is a satisfying assignment of values for the remaining 27 — 1
inputs used for the i and j representations. That is, see if the remaining inputs for
i and j can be filled in to cause the circuit to give output 1. If there is such an
assignment, fix the first i -input to be 1, otherwise fix it to be 0. So now we have set
the first i -input equal to the first digit of the binary representations of an i such that
ij =m.

Now do the same thing to fix the second of the n digital inputs for the represen-
tation of 7, and then third, proceeding in this way through all the n inputs for the
number i. At this point, we have the complete n-bit binary representation of an
i > 1suchij = m for some j > 1. In other words, we have found an integer i
that is a factor of m. We can now find j by dividing m by i.

So after n SAT tests, we have factored m. This means that if SAT for digital
circuits with 4n inputs and about n? gates could be determined by a procedure
taking a number of steps bounded above by a degree d polynomial in #, then 2n
digit numbers can be factored in n times this many steps, that is, with a number of
steps bounded by a polynomial of degree d + 1 in n. So if SAT could be solved in
polynomial time, then so could factoring, and consequently RSA would be “easy”
to break.
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