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8.6 Modular Arithmetic

On the first page of his masterpiece on number theory, Disquisitiones Arithmeticae,
Gauss introduced the notion of “congruence.” Now, Gauss is another guy who
managed to cough up a half-decent idea every now and then, so let’s take a look
at this one. Gauss said that a is congruent to b modulo n iff n j .a � b/. This is
written

a ⌘ b .mod n/:

For example:
29 ⌘ 15 .mod 7/ because 7 j .29 � 15/:

It’s not useful to allow a modulus n  1, and so we will assume from now on
that moduli are greater than 1.

There is a close connection between congruences and remainders:

Lemma 8.6.1 (Remainder).

a ⌘ b .mod n/ iff rem.a; n/ D rem.b; n/:

Proof. By the Division Theorem 8.1.4, there exist unique pairs of integers q1; r1

and q2; r2 such that:

a D q1nC r1

b D q2nC r2;
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where r1; r2 2 Œ0::n/. Subtracting the second equation from the first gives:

a � b D .q1 � q2/nC .r1 � r2/;

where r1 � r2 is in the interval .�n; n/. Now a ⌘ b .mod n/ if and only if n

divides the left side of this equation. This is true if and only if n divides the right
side, which holds if and only if r1 � r2 is a multiple of n. But the only multiple of
n in .�n; n/ is 0, so r1 � r2 must in fact equal 0, that is, when r1 WWD rem.a; n/ D
r2 WWD rem.b; n/. ⌅

So we can also see that

29 ⌘ 15 .mod 7/ because rem.29; 7/ D 1 D rem.15; 7/:

Notice that even though “(mod 7)” appears on the end, the⌘ symbol isn’t any more
strongly associated with the 15 than with the 29. It would probably be clearer to
write 29 ⌘mod 7 15, for example, but the notation with the modulus at the end is
firmly entrenched, and we’ll just live with it.

The Remainder Lemma 8.6.1 explains why the congruence relation has proper-
ties like an equality relation. In particular, the following properties7 follow imme-
diately:

Lemma 8.6.2.

a ⌘ a .mod n/ (reflexivity)
a ⌘ b IFF b ⌘ a .mod n/ (symmetry)

.a ⌘ b AND b ⌘ c/ IMPLIES a ⌘ c .mod n/ (transitivity)

We’ll make frequent use of another immediate corollary of the Remainder Lemma 8.6.1:

Corollary 8.6.3.
a ⌘ rem.a; n/ .mod n/

Still another way to think about congruence modulo n is that it defines a partition
of the integers into n sets so that congruent numbers are all in the same set. For
example, suppose that we’re working modulo 3. Then we can partition the integers
into 3 sets as follows:

f : : : ; �6; �3; 0; 3; 6; 9; : : : g
f : : : ; �5; �2; 1; 4; 7; 10; : : : g
f : : : ; �4; �1; 2; 5; 8; 11; : : : g

7Binary relations with these properties are called equivalence relations, see Section 9.10.
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according to whether their remainders on division by 3 are 0, 1, or 2. The upshot
is that when arithmetic is done modulo n, there are really only n different kinds
of numbers to worry about, because there are only n possible remainders. In this
sense, modular arithmetic is a simplification of ordinary arithmetic.

The next most useful fact about congruences is that they are preserved by addi-
tion and multiplication:

Lemma 8.6.4 (Congruence). If a ⌘ b .mod n/ and c ⌘ d .mod n/, then

aC c ⌘ b C d .mod n/; (8.7)
ac ⌘ bd .mod n/: (8.8)

Proof. Let’s start with 8.7. Since a ⌘ b .mod n/, we have by definition that
n j .b � a/ D .b C c/ � .aC c/, so

aC c ⌘ b C c .mod n/:

Since c ⌘ d .mod n/, the same reasoning leads to

b C c ⌘ b C d .mod n/:

Now transitivity (Lemma 8.6.2) gives

aC c ⌘ b C d .mod n/:

The proof for 8.8 is virtually identical, using the fact that if n divides .b � a/,
then it certainly also divides .bc � ac/. ⌅

8.7 Remainder Arithmetic

The Congruence Lemma 8.6.1 says that two numbers are congruent iff their remain-
ders are equal, so we can understand congruences by working out arithmetic with
remainders. And if all we want is the remainder modulo n of a series of additions,
multiplications, subtractions applied to some numbers, we can take remainders at
every step so that the entire computation only involves number in the range Œ0::n/.
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General Principle of Remainder Arithmetic
To find the remainder on division by n of the result of a series of additions and
multiplications, applied to some integers

✏ replace each integer operand by its remainder on division by n,

✏ keep each result of an addition or multiplication in the range Œ0::n/ by im-
mediately replacing any result outside that range by its remainder on divi-
sion by n.

For example, suppose we want to find

rem..444273456789 C 155558585555/4036666666; 36/: (8.9)

This looks really daunting if you think about computing these large powers and
then taking remainders. For example, the decimal representation of 444273456789

has about 20 million digits, so we certainly don’t want to go that route. But re-
membering that integer exponents specify a series of multiplications, we follow the
General Principle and replace the numbers being multiplied by their remainders.
Since rem.44427; 36/ D 3; rem.15555858; 36/ D 6, and rem.403; 36/ D 7, we
find that (8.9) equals the remainder on division by 36 of

.33456789 C 65555/76666666: (8.10)

That’s a little better, but 33456789 has about a million digits in its decimal represen-
tation, so we still don’t want to compute that. But let’s look at the remainders of
the first few powers of 3:

rem.3; 36/ D 3

rem.32; 36/ D 9

rem.33; 36/ D 27

rem.34; 36/ D 9:

We got a repeat of the second step, rem.32; 36/ after just two more steps. This
means means that starting at 32, the sequence of remainders of successive powers
of 3 will keep repeating every 2 steps. So a product of an odd number of at least
three 3’s will have the same remainder on division by 36 as a product of just three
3’s. Therefore,

rem.33456789; 36/ D rem.33; 36/ D 27:
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What a win!
Powers of 6 are even easier because rem.62; 36/ D 0, so 0’s keep repeating after

the second step. Powers of 7 repeat after six steps, but on the fifth step you get a 1,
that is rem.76; 36/ D 1, so (8.10) successively simplifies to be the remainders of
the following terms:

.33456789 C 65555/76666666

.33 C 62 � 65553/.76/1111111

.33 C 0 � 65553/11111111

D 27:

Notice that it would be a disastrous blunder to replace an exponent by its re-
mainder. The general principle applies to numbers that are operands of plus and
times, whereas the exponent is a number that controls how many multiplications to
perform. Watch out for this.

8.7.1 The ring Zn

It’s time to be more precise about the general principle and why it works. To begin,
let’s introduce the notation Cn for doing an addition and then immediately taking
a remainder on division by n, as specified by the general principle; likewise for
multiplying:

i Cn j WWD rem.i C j; n/;

i �n j WWD rem.ij; n/:

Now the General Principle is simply the repeated application of the following
lemma.

Lemma 8.7.1.

rem.i C j; n/ D rem.i; n/Cn rem.j; n/; (8.11)
rem.ij; n/ D rem.i; n/ �n rem.j; n/: (8.12)

Proof. By Corollary 8.6.3, i ⌘ rem.i; n/ and j ⌘ rem.j; n/, so by the Congru-
ence Lemma 8.6.4

i C j ⌘ rem.i; n/C rem.j; n/ .mod n/:

By Corollary 8.6.3 again, the remainders on each side of this congruence are equal,
which immediately gives (8.11). An identical proof applies to (8.12). ⌅
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The set of integers in the range Œ0::n/ together with the operations Cn and �n is
referred to as Zn, the ring of integers modulo n. As a consequence of Lemma 8.7.1,
the familiar rules of arithmetic hold in Zn, for example:

.i �n j / �n k D i �n .j �n k/:

These subscript-n’s on arithmetic operations really clog things up, so instead
we’ll just write “(Zn)” on the side to get a simpler looking equation:

.i � j / � k D i � .j � k/ .Zn/:

In particular, all of the following equalities8 are true in Zn:

.i � j / � k D i � .j � k/ (associativity of �);
.i C j /C k D i C .j C k/ (associativity ofC);

1 � k D k (identity for �);
0C k D k (identity forC);

k C .�k/ D 0 (inverse forC);
i C j D j C i (commutativity ofC)

i � .j C k/ D .i � j /C .i � k/ (distributivity);
i � j D j � i (commutativity of �)

Associativity implies the familiar fact that it’s safe to omit the parentheses in
products:

k1 � k2 � � � � � km

comes out the same in Zn no matter how it is parenthesized.
The overall theme is that remainder arithmetic is a lot like ordinary arithmetic.

But there are a couple of exceptions we’re about to examine.

8.8 Turing’s Code (Version 2.0)

In 1940, France had fallen before Hitler’s army, and Britain stood alone against
the Nazis in western Europe. British resistance depended on a steady flow of sup-

8A set with addition and multiplication operations that satisfy these equalities is known as a
commutative ring. In addition to Zn, the integers, rationals, reals, and polynomials with integer
coefficients are all examples of commutative rings. On the other hand, the set fT; Fg of truth values
with OR for addition and AND for multiplication is not a commutative ring because it fails to satisfy
one of these equalities. The n ⇥ n matrices of integers are not a commutative ring because they fail
to satisfy another one of these equalities.
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plies brought across the north Atlantic from the United States by convoys of ships.
These convoys were engaged in a cat-and-mouse game with German “U-boats”
—submarines—which prowled the Atlantic, trying to sink supply ships and starve
Britain into submission. The outcome of this struggle pivoted on a balance of in-
formation: could the Germans locate convoys better than the Allies could locate
U-boats, or vice versa?

Germany lost.
A critical reason behind Germany’s loss was not made public until 1974: Ger-

many’s naval code, Enigma, had been broken by the Polish Cipher Bureau,9 and
the secret had been turned over to the British a few weeks before the Nazi invasion
of Poland in 1939. Throughout much of the war, the Allies were able to route con-
voys around German submarines by listening in to German communications. The
British government didn’t explain how Enigma was broken until 1996. When the
story was finally released (by the US), it revealed that Alan Turing had joined the
secret British codebreaking effort at Bletchley Park in 1939, where he became the
lead developer of methods for rapid, bulk decryption of German Enigma messages.
Turing’s Enigma deciphering was an invaluable contribution to the Allied victory
over Hitler.

Governments are always tight-lipped about cryptography, but the half-century
of official silence about Turing’s role in breaking Enigma and saving Britain may
be related to some disturbing events after the war—more on that later. Let’s get
back to number theory and consider an alternative interpretation of Turing’s code.
Perhaps we had the basic idea right (multiply the message by the key), but erred in
using conventional arithmetic instead of modular arithmetic. Maybe this is what
Turing meant:

Beforehand The sender and receiver agree on a large number n, which may be
made public. (This will be the modulus for all our arithmetic.) As in Version
1.0, they also agree that some prime number k < n will be the secret key.

Encryption As in Version 1.0, the message m should be another prime in
mb

Œ0::n/.
The sender encrypts the message m to produce by computing mk, but this
time modulo n:

m WWDm � k .Zn/ (8.13)

Decryption (Uh-oh.)

b

The decryption step is a problem. We might hope to decrypt in the same way as
before by dividing the encrypted message mb by the key k. The difficulty is that m

9See http://en.wikipedia.org/wiki/Polish Cipher Bureau.

b

http://www.bletchleypark.org.uk/content/hist/history/polish.rhtm
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is the remainder when mk is divided by n. So dividing m by k might not even give
us an integer!

This decoding difficulty can be overcome with a better

b

understanding of when it
is ok to divide by k in modular arithmetic.

8.9 Multiplicative Inverses and Cancelling

The multiplicative inverse of a number x is another number x�1 such that

x�1 � x D 1:

From now on, when we say “inverse,” we mean multiplicative (not relational) in-
verse.

For example, over the rational numbers, 1=3 is, of course, an inverse of 3, since,

1

3
� 3 D 1:

In fact, with the sole exception of 0, every rational number n=m has an inverse,
namely, m=n. On the other hand, over the integers, only 1 and -1 have inverses.
Over the ring Zn, things get a little more complicated. For example, in Z15, 2 is a
multiplicative inverse of 8, since

2 � 8 D 1 .Z15/:

On the other hand, 3 does not have a multiplicative inverse in Z15. We can prove
this by contradiction: suppose there was an inverse j for 3, that is

1 D 3 � j .Z15/:

Then multiplying both sides of this equality by 5 leads directly to the contradiction
5 D 0:

5 D 5 � .3 � j /

D .5 � 3/ � j
D 0 � j D 0 .Z15/:

So there can’t be any such inverse j .
So some numbers have inverses modulo 15 and others don’t. This may seem a

little unsettling at first, but there’s a simple explanation of what’s going on.
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8.9.1 Relative Primality
Integers that have no prime factor in common are called relatively prime.10 This
is the same as having no common divisor (prime or not) greater than 1. It’s also
equivalent to saying gcd.a; b/ D 1.

For example, 8 and 15 are relatively prime, since gcd.8; 15/ D 1. On the other
hand, 3 and 15 are not relatively prime, since gcd.3; 15/ D 3 ¤ 1. This turns out
to explain why 8 has an inverse over Z15 and 3 does not.

Lemma 8.9.1. If k 2 Œ0::n/ is relatively prime to n, then k has an inverse in Zn.

Proof. If k is relatively prime to n, then gcd.n; k/ D 1 by definition of gcd. This
means we can use the Pulverizer from section 8.2.2 to find a linear combination of
n and k equal to 1:

snC tk D 1:

So applying the General Principle of Remainder Arithmetic (Lemma 8.7.1), we get

.rem.s; n/ � rem.n; n//C .rem.t; n/ � rem.k; n// D 1 .Zn/:

But rem.n; n/ D 0, and rem.k; n/ D k since k 2 Œ0::n/, so we get

rem.t; n/ � k D 1 .Zn/:

Thus, rem.t; n/ is a multiplicative inverse of k. ⌅

By the way, it’s nice to know that when they exist, inverses are unique. That is,

Lemma 8.9.2. If i and j are both inverses of k in Zn, then i D j .

Proof.
i D i � 1 D i � .k � j / D .i � k/ � j D 1 � j D j .Zn/:

⌅

So the proof of Lemma 8.9.1 shows that for any k relatively prime to n, the
inverse of k in Zn is simply the remainder of a coefficient we can easily find using
the Pulverizer.

Working with a prime modulus is attractive here because, like the rational and
real numbers, when p is prime, every nonzero number has an inverse in Zp. But
arithmetic modulo a composite is really only a little more painful than working
modulo a prime—though you may think this is like the doctor saying, “This is only
going to hurt a little,” before he jams a big needle in your arm.

10Other texts call them coprime.
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8.9.2 Cancellation
Another sense in which real numbers are nice is that it’s ok to cancel common
factors. In other words, if we know that t r D ts for real numbers r; s; t , then
as long as t ¤ 0, we can cancel the t ’s and conclude that r D s. In general,
cancellation is not valid in Zn. For example,

3 � 10 D 3 � 5 .Z15/; (8.14)

but cancelling the 3’s leads to the absurd conclusion that 10 equals 5.
The fact that multiplicative terms cannot be cancelled is the most significant way

in which Zn arithmetic differs from ordinary integer arithmetic.

Definition 8.9.3. A number k is cancellable in Zn iff

k � a D k � b implies a D b .Zn/

for all a; b 2 Œ0::n/.

If a number is relatively prime to 15, it can be cancelled by multiplying by its
inverse. So cancelling works for numbers that have inverses:

Lemma 8.9.4. If k has an inverse in Zn, then it is cancellable.

But 3 is not relatively prime to 15, and that’s why it is not cancellable. More
generally, if k is not relatively prime to n, then we can show it isn’t cancellable in
Zn in the same way we showed that 3 is not cancellable in (8.14).

To summarize, we have

Theorem 8.9.5. The following are equivalent for k 2 Œ0::n/:

gcd.k; n/ D 1;

k has an inverse in Zn;

k is cancellable in Zn:

8.9.3 Decrypting (Version 2.0)
Multiplicative inverses are the key to decryption in Turing’s code. Specifically,
we can recover the original message by multiplying the encoded message by the
Zn-inverse, j , of the key:

mb � j D .m � k/ � j D m � .k � j / D m � 1 D m .Zn/:

So all we need to decrypt the message is to find an inverse of the secret key k, which
will be easy using the Pulverizer—providing k has an inverse. But k is positive and
less than the modulus n, so one simple way to ensure that k is relatively prime to
the modulus is to have n be a prime number.
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8.9.4 Breaking Turing’s Code (Version 2.0)
The Germans didn’t bother to encrypt their weather reports with the highly-secure
Enigma system. After all, so what if the Allies learned that there was rain off the
south coast of Iceland? But amazingly, this practice provided the British with a
critical edge in the Atlantic naval battle during 1941.

The problem was that some of those weather reports had originally been trans-
mitted using Enigma from U-boats out in the Atlantic. Thus, the British obtained
both unencrypted reports and the same reports encrypted with Enigma. By com-
paring the two, the British were able to determine which key the Germans were
using that day and could read all other Enigma-encoded traffic. Today, this would
be called a known-plaintext attack.

Let’s see how a known-plaintext attack would work against Turing’s code. Sup-
pose that the Nazis know both the plain text, m, and its encrypted form, m

V
b. Now in

ersion 2.0,
m D m � k .Zn/;

and since m is positive and less than

b
the prime n, the Nazis can use the Pulverizer

to find the Zn-inverse, j , of m. Now

j �mb D j � .m � k/ D .j �m/ � k D 1 � k D k .Zn/:

So by computing j �m D k .Zn/, the Nazis get the secret key and can then decrypt
any message!

This is a huge vulnerability

b

, so Turing’s hypothetical Version 2.0 code has no
practical value. Fortunately, Turing got better at cryptography after devising this
code; his subsequent deciphering of Enigma messages surely saved thousands of
lives, if not the whole of Britain.

8.9.5 Turing Postscript
A few years after the war, Turing’s home was robbed. Detectives soon determined
that a former homosexual lover of Turing’s had conspired in the robbery. So they
arrested him—that is, they arrested Alan Turing—because at that time in Britain,
homosexuality was a crime punishable by up to two years in prison. Turing was
sentenced to a hormonal “treatment” for his homosexuality: he was given estrogen
injections. He began to develop breasts.

Three years later, Alan Turing, the founder of computer science, was dead. His
mother explained what happened in a biography of her own son. Despite her re-
peated warnings, Turing carried out chemistry experiments in his own home. Ap-
parently, her worst fear was realized: by working with potassium cyanide while
eating an apple, he poisoned himself.
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However, Turing remained a puzzle to the very end. His mother was a devout
woman who considered suicide a sin. And, other biographers have pointed out,
Turing had previously discussed committing suicide by eating a poisoned apple.
Evidently, Alan Turing, who founded computer science and saved his country, took
his own life in the end, and in just such a way that his mother could believe it was
an accident.

Turing’s last project before he disappeared from public view in 1939 involved the
construction of an elaborate mechanical device to test a mathematical conjecture
called the Riemann Hypothesis. This conjecture first appeared in a sketchy paper by
Bernhard Riemann in 1859 and is now one of the most famous unsolved problems
in mathematics.
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