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Strong 
Induction 
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Strong Induction 

                  ThenProve P(0).  prove P(n+1) 
assuming all of 
         P(0), P(1), …, P(n) 
(instead of just P(n)). 

Conclude ∀m.P(m) 

Postage by Strong Induction 

available stamps: 
5¢ 3¢ 

Thm: Get any amount ≥ 8¢ 
By strong induction with hyp: 
    P(n) ::= can form n + 8¢. 
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Postage by Strong Induction 

available stamps: 
5¢ 3¢ 

Thm: Get any amount ≥ 8¢ 
base case P(0): make 0 + 8¢  
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Postage by Strong Induction 

available stamps: 
5¢ 3¢ 

Thm: Get any amount ≥ 8¢ 
inductive step: 
Assume m+8¢ for n ≥ m ≥ 0.  
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Postage by Strong Induction 

available stamps: 
5¢ 3¢ 

Thm: Get any amount ≥ 8¢ 
inductive step: 
Assume all from 8 to n+8¢. 
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available stamps: 
5¢ 3¢ 

Thm: Get any amount ≥ 8¢ 
inductive step: 
Assume all from 8 to n+8¢. 
Prove can get  n(n+1)+9¢       +, for8¢  n ≥0 
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Postage by Strong Induction 
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Postage by Strong Induction 

inductive step cases: 
n=0,  0+9¢ = 

n=1,  1+9¢ = 
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            so by hypothesis 
            can get (n-2)+8¢ 
 

� �

(n-2)+8¢

 n ≥ 2, 

= n+9¢ 
3¢

Postage by Strong Induction 
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Postage by Strong Induction 

We conclude by strong 
induction that, 
using 3¢ and 5¢ stamps, 
n + 8¢ postage can be 
formed for all n ≥ 0. 
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Unstacking game 

Start: a stack of boxes  
Move: split any stack into two of 

sizes a,b>0  
Scoring: a b points 
Keep moving: until stuck 
Overall score:  sum of move scores  

a b a+b 
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Analyzing the Stacking Game 

Claim: Every way of unstacking  
n blocks gives the same score: 
 n(n - 1)
(n-1)+(n-2)++1 =

 2
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 n+9¢       , for n≥0
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Analyzing the Game 

Claim: Starting with size n stack, 
final score will be  

n(n - 1)

 2
Proof: by Strong induction with 
   Claim(n) as hypothesis 
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Proving the Claim by Induction 

Base case n = 0: 
 0(0 − 1) score = 0  =

2

Claim(0) is 
lec 4W.14 

lec 3F.15 Albert R Meyer                February 24, 2012 

Proving the Claim by Induction 

Inductive step.  Assume for 
stacks ≤ n, and prove C(n+1): 
 

(n + 1)n(n+1)-stack score = 
 2
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Proving the Claim by Induction 

Inductive step.    
Case n+1 = 1. verify for 1-stack: 

= 1(1 - 1) score = 0
 2

C(1) is 
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Proving the Claim by Induction 

Inductive step. 
Case n+1 > 1.  Split n+1 into an 
       a-stack and b-stack, 
where a + b = n +1. 

(a + b)-stack score = ab + 
  a-stack score + b-stack score 
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Proving the Claim by Induction 

by strong induction: 
a(a - 1)a-stack score =

 2
b(b - 1)b-stack score =

 2
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total (a + b)-stack score = 
a(a - 1) b(b - 1)ab + + =

 2 2
(a + b)((a + b) - 1) (n + 1)n=
 2 2

so C(n+1) is 
We’re done! 
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Proving the Claim by Induction 

2/23/12	
  

п	
  

vver14
Rectangle

vver14
Rectangle



MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu/



