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Induction 

The Idea of Induction 

Color the integers ≥≥ 0  
0, 1, 2, 3, 4, 5, ?, … 

I tell you, 0 is red, & any int 
next to a red integer is red, 
    then you know that 
    all the ints are red! 
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The Idea of Induction 

Color the integers ≥≥ 0  
0, 1, 2, 3, 4, 5, … 

I tell you, 0 is red, & any int 
next to a red integer is red, 
    then you know that 
    all the ints are red! 
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Induction Rule 

R(0), R(0) IMPLIES R(1),R(1) IMPLIES R(2),
R(2) IMPLIES R(3),…,R(n) IMPLIES R(n+1),…   

R(0), R(1), R(2), …,R(n) ,…
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Induction Rule 

R(0), R(0) IMPLIES R(1),R(1) IMPLIES R(2),
R(2) IMPLIES R(3),…,R(n) IMPLIES R(n+1),…   

R(0), R(1), R(2), …,R(n) ,…

R(0), ∀n.R(n) IMPLIES R(n+1)

  ∀m.R(m)
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Like Dominos… 
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Example Induction Proof 

Let’s prove: 

1+r+r2+�+rn r(n+1)-1=
r-1

(for r ≠ 1) 
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Example Induction Proof 
Statements in magenta form a 
template for inductive proofs: 

Proof: (by induction on n) 
The induction hypothesis, P(n), is: 

r(n+1)-11+r+r2+ n�+r =
r-1

(for r ≠ 1) 

Image by MIT OpenCourseWare.
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Base Case (n = 0):  
 ? r0+1 -1
 1 +r +r2 +�+r0 =

r -1
1 r -1 1= =

r -1OK! 

Example Induction Proof 
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Example Induction Proof 

Inductive Step: Assume P(n)  
where n ≥ 0  and prove P(n+1): 

r (n+1)+1-11 +r +r2 +�+rn+1 =
r -1
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Example Induction Proof 

Now from induction 
 hypothesis P(n) we have 

1 +r +r2 +�+rn rn+1 -1=
r -1

so add rn+1 to both sides 
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Example Induction Proof 

adding rn+1 to both sides, 
n r1+r +r2 ⎛ n+1 -1⎞+�+r + rn+1 = n+1

⎜  r
r - ⎟( ) +

⎝ 1 ⎠

This proves    n+1r -1+ n+1r (r -1)=
 P(n+1)   r -1
completing the (n+1)+1r -1=proof by induction. r -1
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an aside: ellipsis 
“�” is an ellipsis.                                Means you 
 should see a pattern: 

n
 =∑ri
   1 + r +r2 +�+rn

i=0

Can lead to confusion (n = 0?) 
sum (∑) notation more precise 

lec 3F.14 Albert R Meyer                February 24, 2012 

The MIT Stata Center 
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Design Mockup: Stata Lobby 
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                             , except for 1×1 
square in the middle for Bill.  
Goal: Tile the plaza 
 

 2n

 2n

Mockup: Plaza Outside Stata 

 

Copyright © 2003, 2004, 2005 Norman Walsh. This
work is licensed under a Creative Commons license.

Image removed due to copyright restrictions.
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Plaza Outside Stata 
Gehry specifies L-shaped tiles covering  
three squares: 

For example, for 8 x 8 plaza might tile for Bill  
this way: 
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Plaza Outside Stata 
Theorem:  For any 2n×2n  plaza, we can  
make Bill and Frank happy. 
Proof: (by induction on n) 
P(n) ::= can tile 2n×2n with Bill in middle. 

Base case:  (n=0) 

(no tiles needed) 
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 2n

Plaza Outside Stata 
Induction step: assume can tile 
2n×2n, prove can tile 2n+1×2n+1 

  2n+1
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 2n

Plaza Outside Stata 
Now what?... 

n
  2 +1

vver14
Line

vver14
Line

vver14
Line

vver14
Line

vver14
Line

vver14
Line

vver14
Line

vver14
Line

vver14
Rectangle

vver14
Rectangle

vver14
Line

vver14
Line

vver14
Line

vver14
Line



�������

��

lec 3F.21 Albert R Meyer                February 24, 2012 

Plaza Outside Stata 

The fix: 
prove something stronger 
—that we can find a tiling  
with Bill in any square. 
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Plaza Theorem 
Theorem:  For any 2n×2n  plaza, we 
can make Bill and Frank happy. 

Proof: (by induction on n) 
revised induction hypothesis P(n) ::= 
can tile  with Bill anywhere 
Base case:  (n=0)  as before 
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 2n

 2n

           

Assume anywhere in 2n×2n 
Prove we can get Bill anywhere in 2n+1×2n+1 

Plaza Proof 
 Inductive step:

 we can get Bill 
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Now group the squares together, 
 and fill the center Bill’s with a tile. 

Plaza Proof 

Done! 
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Recursive Procedure 

Note: The induction proof 
implicitly defines a 

recursive procedure 
for tiling with Bill anywhere. 
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