

halting.1Albert R Meyer, March 4, 2015

Mathematics for Computer Science
MIT 6.042J/18.062J

Noncomputable
Sets

halting.2Albert R Meyer, March 4, 2015

Computable strings in {0,1}ω

An infinite string s in {0,1}ω is �
computable iff some
procedure computes its digits.
(Procedure applied to argument

n returns nth digit of s.)

halting.3Albert R Meyer, March 4, 2015

Only countably many finite
ASCII strings.

Procedures can be expressed in
ASCII, so only

countably many procedures.

{ASCII}* is countable

 (List them in
order of length.)

halting.4Albert R Meyer, March 4, 2015

So only countably many computable
infinite binary strings.

Noncomputable strings in {0,1}ω

But {0,1}ω is uncountable, so
there must be noncomputable
strings in {0,1}ω

—in fact, uncountably many!

1

The Halting Problem The Halting Problem

There is no test procedure for

halting of arbitrary procedures.

The Halting Problem

is not decidable

by computational procedures

String procedure P takes a String

argument:

P("no") returns 2

P("albert") returns "meyer"

P("&&%99!!") causes an error

P("what now?") runs forever.

Albert R Meyer, March 4, 2013 halting.6Albert R Meyer, March 4, 2015 halting.5

The Halting Problem The Halting Problem

Let s be an ASCII string

defining Ps.

Say s HALTS iff

Ps(s) returns something.

Suppose there was a
procedure Q that decided
HALTS:
Q(s) returns "yes” if s HALTS

returns "no” otherwise

Albert R Meyer, March 4, 2013 halting.7 Albert R Meyer, March 4, 2013 halting.8

2

halting.9Albert R Meyer, March 4, 2013

The Halting Problem

Modify Q to Q':
Q'(s) returns "yes”

if Q(s) returns "no"
Q'(s) returns nothing

if Q(s) returns "yes”

halting.10Albert R Meyer, March 4, 2013

The Halting Problem

So
s HALTS iff
Q'(s) returns nothing

halting.11Albert R Meyer, March 4, 2013

The Halting Problem

Let t be the text for Q’
So by def of HALTS:
t HALTS iff Q'(t) returns

and by def of Q’:
Q'(t) returns iff NOT(t HALTS)

halting.12Albert R Meyer, March 4, 2013

The Halting Problem

CONTRADICTION:

t HALTS iff NOT(t HALTS)
There can't be such a Q:
it is impossible to write a
procedure that decides
whether strings HALT

3

 

 

The Type-checking Problem The Type-checking Problem

There is no string procedure that
type-checks perfectly, because:
Suppose C was a type-checking
procedure: for program text s
C(s) returns “yes” if s would cause

a run-time type error
returns “no” otherwise.

Use C to get a HALTS Tester H:
to compute H(s), construct a
new program text, s’, that
acts like a slightly modified
interpreter for s. Namely:

Albert R Meyer, March 4, 2013 	 halting.13 Albert R Meyer, March 4, 2013 	 halting.14

The Type-checking Problem The Type-checking Problem

•	 s’ skips any command that
would cause s to make a
run-time type error.

•	 s’ purposely makes a type-
error when it finds that s
HALTS.

Then compute C(s’) and
return the same value.

So s HALTS
iff s’ makes run-time type error
iff C(s’) = “yes”
iff H(s) = “yes”

Albert R Meyer, March 4, 2013 	 halting.15 Albert R Meyer, March 4, 2013 	 halting.16

4

http:halting.16
http:halting.15
http:halting.14
http:halting.13

No run-time properties

are decidable

The Type-checking Problem

H solves the Halting
Problem, a contradiction.
So C must not error check
correctly.

Albert R Meyer, March 4, 2013 halting.18

The same reasoning shows
that there is no perfect
checker for essentially any
property of procedure
outcomes.

Albert R Meyer, March 4, 2013 halting.19

5

http:halting.19
http:halting.18

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

