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Hall’s 
Theorem 
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G B 

Hall.2 

Hall graph H 

L(H) R(H) 
E(H) 
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Hall graph H 
A match is a 
total injective function 

m:G�B 
that follows edges 
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Hall graph H 
A match is a 
total injective function 

m:G�B 
g —  m(g) ∈ E 
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Hall graph H 
A match is a 
total injective function 

B 
graph(m) ⊆ E 
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If |S|≤|E(S)| for all 
sets of girls, S, 
then there is a match. 

Hall’s Theorem 
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Hall’s condition 
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How to verify no bottlenecks? 

fairly efficient matching 
procedure is known 
(explained in algorithms subjects) 
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…but there is a special 
situation that ensures a 
match… 
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How to verify no bottlenecks? 

If every girl likes ≥ d  boys, 
and every boy likes ≤ d  girls, 
then no bottlenecks. 

Hall.8 

a degree-constrained 
Hall graph 
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How to verify no bottlenecks? How to verify no bottlenecks? 

If every girl likes ≥ d  boys, 
and every boy likes ≤ d  girls, 
then no bottlenecks. 
proof: 
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If every girl likes ≥ d  boys, 
and every boy likes ≤ d  girls, 
then no bottlenecks. 
proof: say set S of girls has e 
incident edges:

 d   |S| ≤ e ≤ d |E(S)| 
so |S| ≤ |E(S)| 

no bottleneck 
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Proof of Hall’s Theorem Proof of Hall’s Theorem 

Suppose no bottlenecks. Suppose no bottlenecks. 
Lemma: If S a set of girls withLemma: No bottlenecks 

|S|=|E(S)|,within any set S of girls. 
then no bottlenecks between 

obviously s and E(S) either 
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bottleneck between & ? 
T 

then T ∪ S 
is a bottleneck X 

s E(S) 

E(S)S 

s E(S) 
bottleneck 
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No bottlenecks implies 
there is a perfect match. 
proof: 
by strong induction 
on # girls 
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Proof of Hall’s Theorem 
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Case 1: there is a nonempty 
proper subset S of girls with 

|S|=|E(S)|. 
by Lemmas, no bottlenecks in 
Hall graph (S, E(S)), 
and none in (S, E(S)) 
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Proof of Hall’s Theorem 
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by induction, match 
(S, E(S)) and 
separately. 

(S, E(S)) 
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Proof of Hall’s Theorem 
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by induction, match 
(S, E(S)) and 
separately. Matchings 
don’t overlap, so union 
is a complete matching. 

(S, E(S)) 
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Proof of Hall’s Theorem 
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Case 2: |S|<|E(S)| for all 
nonempty proper subsets S. 
Pick a girl, g. 

Hall’s Theorem 
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Case 2: |S|<|E(S)| for all 
nonempty proper subsets S. 
Pick a girl, g. She must be 
compatible with some boy, b 
(in fact, at least 2 boys). 

Hall’s Theorem 
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Case 2: |S|<|E(S)| for all 
nonempty proper subsets S. 
Match g with b. 

Hall’s Theorem 

Hall.20 
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Hall’s Theorem
Hall’s Theorem 

Case 2: |S|<|E(S)| for all 
nonempty proper subsets S. 
Match g with b. Removing b 
still leaves |S|≤|E(S)|, so no 
bottlenecks. 
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Case 2: |S|<|E(S)| for all 
nonempty proper subsets S. 
By induction, can match 
remaining girls & boys. This 
match along with g—b is 
complete match. QED 
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