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In-Class Problems Week 3, Fri.

Problem 1.
The inverse, R�1, of a binary relation, R, from A to B , is the relation from B to A defined by:

b R�1 a iff a R b:

In other words, you get the diagram for R�1 from R by “reversing the arrows” in the diagram describing
R. Now many of the relational properties of R correspond to different properties of R�1. For example, R

is total iff R�1 is a surjection.
Fill in the remaining entries is this table:

R is iff R�1 is
total a surjection
a function
a surjection
an injection
a bijection

Hint: Explain what’s going on in terms of “arrows” from A to B in the diagram for R.

Arrow Properties

Definition. A binary relation, R is

� is a function when it has the Œ� 1 arrow out� property.

� is surjective when it has the Œ� 1 arrows in� property. That is, every point in the righthand, codomain
column has at least one arrow pointing to it.

� is total when it has the Œ� 1 arrows out� property.

� is injective when it has the Œ� 1 arrow in� property.

� is bijective when it has both the ŒD 1 arrow out� and the ŒD 1 arrow in� property.

Problem 2.
Let A D fa0; a1; : : : ; an�1g be a set of size n, and B D fb0; b1; : : : ; bm�1g a set of size m. Prove that
jA � Bj D mn by defining a simple bijection from A � B to the nonnegative integers from 0 to mn � 1.

Problem 3.
Assume f W A ! B is total function, and A is finite. Replace the ? with one of �;D;� to produce the
strongest correct version of the following statements:
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(a) jf .A/j ? jBj.

(b) If f is a surjection, then jAj ? jBj.

(c) If f is a surjection, then jf .A/j ? jBj.

(d) If f is an injection, then jf .A/j ? jAj.

(e) If f is a bijection, then jAj ? jBj.

Problem 4.
Let R W A! B be a binary relation. Use an arrow counting argument to prove the following generalization
of the Mapping Rule 1 in the course textbook.

Lemma. If R is a function, and X � A, then

jX j � jR.X/j:

Problem 5. (a) Prove that if A surj B and B surj C , then A surj C .

(b) Explain why A surj B iff B inj A.

(c) Conclude from (a) and (b) that if A inj B and B inj C , then A inj C .

(d) Explain why A inj B iff there is a total injective function ( D 1 out � in ) from to 1Œ ; 1 � A B .

1The official definition of inj is with a total injective relation (Œ� 1 out;� 1 in�)
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