Massachusetts Institute of Technology
6.042J/18.062], Spring ’15: Mathematics for Computer Science March 2
Prof. Albert R Meyer & Prof. Adam Chlipala revised Wednesday 25% February, 2015, 17:53

In-Class Problems Week 5, Mon.

Problem 1.

The Elementary 18.01 Functions (F18’s) are the set of functions of one real variable defined recursively as
follows:
Base cases:

e The identity function, id(x) ::= x is an F18,
e any constant function is an F18,
e the sine function is an F18,

Constructor cases:
If f, g are F18’s, then so are

1- f +g’ fgazg’
2. the inverse function f 1,
3. the composition f o g.

(a) Prove that the function 1/x is an F18.

Warning: Don’t confuse 1/x = x~! with the inverse id ™! of the identity function id(x). The inverse id ™"
is equal to id.

(b) Prove by Structural Induction on this definition that the Elementary 18.01 Functions are closed under
taking derivatives. That is, show that if f(x) is an F18, then so is f’ ::= df/dx. (Just work out 2 or 3 of
the most interesting constructor cases; you may skip the less interesting ones.)

Problem 2.
Let p be the string []. A string of brackets is said to be erasable iff it can be reduced to the empty string by
repeatedly erasing occurrences of p. For example, here’s how to erase the string [[[1][1]1[]:

(LT = [T =11 — 4.

On the other hand the string [] J[[[[[]] is not erasable because when we try to erase, we get stuck: J[[[:

CITCCCCCT) — T0000Y — 1000 4

Let Erasable be the set of erasable strings of brackets. Let RecMatch be the recursive data type of strings
of matched brackets defined recursively:

e Base case: A € RecMatch.

)OS 7015, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 license.

http://web.mit.edu/
http://people.csail.mit.edu/meyer
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://people.csail.mit.edu/meyer
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://www.csail.mit.edu/user/2587

2 In-Class Problems Week 5, Mon.

e Constructor case: If s, ¢ € RecMatch, then [s] ¢ € RecMatch.

(a) Use structural induction to prove that

RecMatch C Erasable.

(b) Supply the missing parts (labeled by “(*)”) of the following proof that

Erasable € RecMatch.

Proof. We prove by strong induction that every length n string in Erasable is also in RecMatch. The induc-
tion hypothesis is
P(n) ::= Vx € Erasable. |x| = n IMPLIES x € RecMatch.

Base case:
(*) What is the base case? Prove that P is true in this case.

Inductive step: To prove P(n + 1), suppose |x| = n + 1 and x € Erasable. We need to show that
x € RecMatch.

Let’s say that a string y is an erase of a string z iff y is the result of erasing a single occurrence of p in z.

Since x € Erasable and has positive length, there must be an erase, y € Erasable, of x. So |y| =n—1 >0,
and since y € Erasable, we may assume by induction hypothesis that y € RecMatch.

Now we argue by cases:
Case (y is the empty string):
(*) Prove that x € RecMatch in this case.

Case (y = [s]t for some strings 5,7 € RecMatch): Now we argue by subcases.

e Subcase(x = py):
(*) Prove that x € RecMatch in this subcase.

o Subcase (x is of the form [s’] # where s is an erase of s’):
Since s € RecMatch, it is erasable by part (b), which implies that s’ € Erasable. But |s’| < |x|, so
by induction hypothesis, we may assume that s’ € RecMatch. This shows that x is the result of the
constructor step of RecMatch, and therefore x € RecMatch.

o Subcase (x is of the form [s] ¢’ where ¢ is an erase of ¢'):
(*) Prove that x € RecMatch in this subcase.

(*) Explain why the above cases are sufficient.

This completes the proof by strong induction on 1, so we conclude that P (n) holds for all n € N. Therefore
x € RecMatch for every string x € Erasable. That is, Erasable € RecMatch. Combined with part (a), we
conclude that

Erasable = RecMatch.

Problem 3.
Here is a simple recursive definition of the set, E, of even integers:

In-Class Problems Week 5, Mon. 3

Definition. Base case: 0 € E.
Constructor cases: If n € E, then so are n 4+ 2 and —n.

Provide similar simple recursive definitions of the following sets:
(a) Theset S ::= {2%¥3Mm5" ¢ N | k,m,n € N}.
(b) The set T ::= {2k32k+msm+n ¢ N |k, m,n € N}.
(¢) Theset L ::={(a,b) € Z? | (a — b) is a multiple of 3}.

Let L’ be the set defined by the recursive definition you gave for L in the previous part. Now if you did it
right, then L’ = L, but maybe you made a mistake. So let’s check that you got the definition right.

(d) Prove by structural induction on your definition of L’ that
L' CL.

(e) Confirm that you got the definition right by proving that
LclL

(f) See if you can give an unambiguous recursive definition of L.
Supplemental problem:

Problem 4.

Definition. The recursive data type, binary-2PTG, of binary trees with leaf labels, L, is defined recursively
as follows:

e Base case: (leaf,!/) € binary-2PTG, for all labels / € L.
e Constructor case: If G, G, € binary-2PTG, then
(bintree, G, Gy) € binary-2PTG.

The size, |G|, of G € binary-2PTG is defined recursively on this definition by:

e Base case:
|(leaf,l)| =1, forall/ e L.

e Constructor case:
| (bintree, G1,G2) | :=|G1| + |G2| + 1.
For example, the size of the binary-2PTG, G, pictured in Figure 1, is 7.
(a) Write out (using angle brackets and labels bintree, leaf, etc.) the binary-2PTG, G, pictured in
Figure 1.
The value of flatten(G) for G € binary-2PTG is the sequence of labels in L of the leaves of G. For
example, for the binary-2PTG, G, pictured in Figure 1,

flatten(G) = (win, lose,win,win).

(b) Give a recursive definition of flatten. (You may use the operation of concatenation (append) of two
sequences.)

(c) Prove by structural induction on the definitions of flatten and size that

2 - length(flatten(G)) = |G| + 1. (1)

In-Class Problems Week 5, Mon.

lose win

Figure 1 A picture of a binary tree G.

MIT OpenCourseWare
https://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Spring 2015

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Problem 1
	Problem 2
	Problem 3
	Problem 4

