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Quiz 2 

YOUR NAME: 

•	 Calculators are not allowed on this exam. 

•	 You may use one 8.5× 11” sheet with notes in your own handwriting on both sides, 
but no other sources of information. 

•	 You may assume all results from lecture, the notes, problem sets, and recitation. 

•	 Write your solutions in the space provided. If you need more space, write on the 
back of the sheet containing the problem. 

•	 Be neat and write legibly. You will be graded not only on the correctness of your 
answers, but also on the clarity with which you express them. 

•	 The exam ends at 9:30 PM. 

•	 GOOD LUCK! 

Problem Points Grade Grader 

1 10 
2 10 
3 15 
4 15 
5 20 
6 15 
7 15 

Total 100 
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2 Quiz 2


NOTE: For this exam, a “closed form” is a mathematical ex­
pression without summation notation, product notation, or the 
. . . symbol. Factorials and binomial coefficients may appear in 
a closed form. Some examples are shown below. 

Closed Forms NOT Closed Forms 
n

42 k2 

k=0 

n � � 
n(

√
x + 1)

� 
1 +

1 

i 
i=1 

n 1 1 1 
n! + + + . . . + 

3 1 2 n 
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Problem 1. [10 points] Let S consist of all positive integers with no prime factor larger 
than 3, and define: � 1 

X = 
k 

k∈S 

Thus, the first few terms of the sum are: 
1 1 1 1 1 1 1 1 

X = + + + + + + + + . . . 
1 2 3 4 6 8 9 12 

(a) Write a closed­form expression in the box that makes the equation below true. 

∞ ∞

X = 
j=0 k=0 

Solution. Every positive integer with no prime factor larger than 3 has the form 
2j3k for some nonnegative integers j and k. Thus, the expression 

1 

2j3k 

makes the equation true. 

(b) Write a closed­form expression in the box that makes this equation true: 

X = 

Solution. We’ll apply the formula for an infinite geometric sum twice. � � 
∞� ∞� 1 

∞� 1 
∞� 1 

= 
2j3k 2j 3k 

j=0 k=0 j=0 

∞� 1 

k=0 � 
1 

� 

= 
j=0 � 

2j 

1 

1 − 1/3 � ∞� 1 
= 

1 − 1/3 
j=0 � �� 

2j � 
1 1 

= 
1 − 1/3 1 − 1/2 

= 3 
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Problem 2. [10 points] Derive integrals that are closely­matching lower and upper bounds 
on the sum 

2n� 1 

ln k 
k=n 

where n ≥ 3. Justify your answers with a diagram. Do not integrate. Your answers 
should be unevaluated integrals. 

(a)	 Draw your diagram in the space below. (To receive full credit, the diagram must 
clearly communicate why your integral bounds are correct.) 

Solution. 

-

6 

y = 1 
ln x 

y = 1 
ln(x

1 
ln n 

1 
ln(n

1 
n) 

+1) 

+1) ln(2

n	 2nn − 1 � 2n 1(b) Write your lower bound integral here → dx 
n−1 ln(x+1) 

� 2n 1(c) Write your upper­bound integral here → dx
ln xn−1 
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5 Quiz 2 

Problem 3. [15 points] Solve the following problems involving asymptotic notation. Here 
Hn is the n­th harmonic number; thus, Hn = 1/1 + 1/2 + . . . + 1/n. 

(a)	 Circle all symbols on the right that could properly appear in the box on the same 
line. (There may be more than one!) 

n2 log n2n = Θ O Ω o√
n + 1 

3n − n 32n = Θ O Ω o 

2Hn = (ln n)	 Θ O Ω o 

0.01n = (ln n)100 Θ O Ω o 

Solution. (1) Ω (2) O, o (3) Θ, O, Ω (4) Ω (5) Ω. 

(b)	 Suppose that f(n) ∼ g(n). Beside each statement below that must be true, circle 
true. Beside the remaining statements, circle false. 

f (n)2 ∼ g(n)2 true false 

f (n) = O(g(n)) true false 

f (n) = o(g(n)) true false 

2f(n) = Θ(2g(n)) true false 

Solution. (a) True. (b) True. (c) False for all f, g. (d) False. Let f(n) = n, g(n) = 
n + log n. 
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Problem 4. [15 points] A misguided MIT student designs a self­replicating 6.270 robot. 
The student builds one such robot every day, starting on day 0. The day after a robot is 
built, it constructs two copies of itself. (On all subsequent days, the robot busily searches 
for ping­pong balls— these are 6.270 robots, after all.) Here is what happens over the first 
few days: 

Day 0. The student builds robot R1. 

Day 1. The student builds robot R2. Robot R1 builds robots R3 and R4. 

Day 2. The student builds R5. Robot R2 builds R6 and R7, robot R3 builds R8 and R9, and 
robot R4 builds R10 and R11. Robot R1 searches for ping­pong balls. 

Day 3. The student builds R12. Robots R5, . . . , R11 build robots R13, . . . , R26. Robots R1, 
R2, R3, and R4 search for ping­pong balls. 

Let Tn be the number of robots in existence at the end of day n. Thus, T0 = 1, T1 = 4, 
T2 = 11, and T3 = 26. 

(a)	 How many new robots are built on day n − 1? Express your answer in terms of 
the variables Tn−1, Tn−2, . . . and assume n ≥ 2. 

Solution. This is the difference between the number that existed on day n − 1 and 
the number that existed on day n− 2, which is Tn−1 − Tn−2. 

(b)	 Express Tn with a recurrence equation and sufficient base cases. Do not solve the 
recurrence. 

Solution. The number of robots on day n is equal to the number of robots on day 
n− 1, plus twice the number of robots built yesterday (Tn−1 − Tn−2), plus the 1 robot 
built by the student. Therefore, we have: 

T0 = 1 

T1 = 4 

Tn = 3Tn−1 − 2Tn−2 + 1 (for n ≥ 2) 
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(c)	 An even more misguided 6.270 student designs another self­replicating robot to 
hunt down and destroy robots of the first kind. The number of these robots at the 
end of day n is Pn, where: 

P0 = 0 

P1 = 1 

Pn = 5Pn−1 − 6Pn−2 + 1 (for n ≥ 2) 

Find a closed­form expression for Pn. Show your work clearly to be eligible for 
partial credit. 

2Solution. The characteristic equation is x − 5x + 6 = 0. The right side factors into 
(x − 2)(x − 3), so the roots are 2 and 3. For a particular solution, let’s first guess Pn = c. 
Substituting this into the recurrence equation gives c = 5c − 6c + 1, which implies that 
c = 1/2. Therefore, the general form of the solution is: 

Pn = A 2n + B 3n + 1/2· · 

Substituting P0 = 0 and P1 = 1 gives the equations: 

0 = A + B + 1/2 

1 = 2A + 3B + 1/2 

Solving this system gives A = −2 and B = 3/2. Therefore, the solution is: 

3 
Pn = −2 · 2n + 3n + 1/2 

2
· 
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Problem 5. [20 points] Solve the following counting problems. Your answers must be 
closed forms, but need not be simplified. In particular, you may leave factorials and 
binomial coefficients in your answers. To be eligible for partial credit, you must explain 
how you arrived at your answer. 

(a)	 Four card players (Alice, Bob, Carol, and Dave) are each dealt a 7­card hand from 
a 52­card deck. In how many different ways can this be done? 

Solution. There is a bijection with 52­symbol sequences containing 7 A’s, 7 B’s, 7 
C’s, 7 D’s and 24 X’s (indicating cards that remain in the deck). Thus, the number of 
ways to deal out the cards is 

51! 

7!4 24! 

by the Bookkeeper Rule. 

(b)	 Stinky Peterson has decided to start a Bug Farm under his bed. He plans to 
raise 100 bugs selected from four basic varieties: creepy, crawly, fuzzy, and slimey. 
Assuming he wants at least 10 speciments of each, how many different distributions 
are possible? (For example, one possible distribution is 20 creepy, 20 crawly, 10 
fuzzy, and 50 slimey.) 

Solution. First, he places 10 specimens of each under his bed. Then he must se­
lect the remaining 60 additional speciments from the four kinds of bug. There is a 
bijection between such selections and 63­bit sequences with exactly 3 ones, so the 
number of distributions is � � 

63! 63 
= 

60! 3! 60 

by the Bookkeeper Rule. 

(c)	 There are n runners in a race. Before the race, each runner is assigned a number 
between 1 and n. The runners can finish the race in any one of n! different orders. 
In how many of these orders is the first finisher not #1, the second finisher not #2, 
and the third finisher not #3? 

Solution. Let Pk be the set of finishing orders in which runner #k is is the k­th 
finisher. In these terms, the solution is: 

n! − P1 ∪ P2 ∪ P3 = n! − ( P1 + P2 + P3| |	 | | | | | |
P1 ∩ P2 P1 ∩ P3 P2 ∩ P3− | | − |	 | − | | 

+ P1 ∩ P2 ∩ P3 )| |
= n! − 3(n − 1)! + 3(n − 2)! − (n − 3)! 

(d)	 How many ways are there to park 4 identical SUVs and 10 identical cars in a row 
of 20 parking spaces if SUVs are too wide to park next to each other? For example, 
here is one parking possibility: 
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S c c c S c S c c c c S c c 
U a a a U a U a a a a U a a 
V r r r V r V r r r r V r r 

Solution. First, let’s park the SUVs. The number of ways to do this is equal to the 
number of ways to select 20 books off of a shelf such that adjacent books are not 
selected— a problem of a type you’ve seen before. The answer is 17 . Now the 10 

4 

cars can be parked in the 16 remaining spaces in 16 ways. So the total number of 
10 

parking possibilities is: 
17 16 

4 
· 

10 

(e)	 A mobile is a hanging structure built from seven horizontal rods (indicated with 
solid lines), seven vertical strings (indicated with dotted lines), and eight toys (indi­
cated with the letters A­H). 

� 

� 

-

A B C D E F G H 

Many different toy arrangements can be obtained by twisting the strings. For ex­
ample, twisting the string marked with the → arrow would swap toys A and B. 
Twisting the string marked with the ← arrow would reverse the order of toys E, 
F, G, and H. On the other hand, no combination of twists swaps only toys B and 
C. Two mobiles are different if one can not be obtained from the other by twisting 
strings. How many different mobiles are possible? 

Solution. There are 8! different sequences of toys. Each mobile can be configured 
in 27 different ways, by twisting or not twisting the 7 upper strings. Thus, there is 
a 27­to­1 mapping from sequences to mobiles. By the Division Rule, the number of 
different mobiles is 8!/27 = 315. 

��
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Problem 6. [15 points] A subsequence is obtained from a sequence by deleting one or more 
terms. For example, the sequence (1, 2, 3, 4, 5) contains (2, 4, 5) as a subsequence. 

Theorem. Every sequence of n2 + 1 distinct integers contains an increasing or decreasing subse­
quence of length n + 1. 

For example, in the 32+1 = 10 term sequence (5, 6, 1, 4, 9, 0, 2, 7, 8, 3), the underlined terms 
form an increasing sequence of length 3 + 1 = 4. Fill in the outline of a proof provided 
below. 

Proof. 

(a)	 Label each term in the sequence with the length of the longest increasing subse­
quence that ends with that term. For example, here is a sequence with the corre­
ponding labels listed below. 

( 2, 6, 1, 5, 4, 9, 0, 8, 3, 7 ) 

1 2 1 

Solution. 
1, 2, 1, 2, 2, 3, 1, 3, 2, 3 

(b)	 Now there are two cases. If some term is labeled n+1 or higher, then the theorem 
is true because 

Solution. this means there is an increasing sequence of length at least n + 1 that 
ends with that term. 

(c) Otherwise, at least n + 1 terms must have the same label b ∈ {1, 2, . . . , n} because 

Solution. of the Pigeonhole Principle. Regard the labels a pigeons and the numbers 
1, 2, . . . , n as pigeonholes. Assign each label to its value. Since there are n2 + 1 
pigeons and only n pigeonholes, some n + 1 pigeons must be assigned to some hole 
b. 

(d) The theorem is also true in this case because 

Solution. Each of the n + 1 terms labeled b must be smaller than the one before. 
(Otherwise, a term labeled b could be appended to the length­b increasing sequence 
that ends at its predecessor to obtain a length­(b + 1) increasing sequence. But then 
the term should actually be labeled b + 1.) Therefore, the n + 1 terms labeled b form 
a decreasing subsequence. 
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Problem 7. [15 points] Every day in the life of Dangerous Dan is a potential disaster: 

• Dan may or may not spill his breakfast cereal on his computer keyboard. 

• Dan may or may not fall down the front steps on his way out the door. 

• Dan stubs his toe zero or more times. 

• Dan blurts something foolish an even number of times. 

Let Tn be the number of different combinations of n mishaps Dan can suffer in one day. 
For example, T3 = 7, because there are seven possible combinations of three mishaps: 

spills 0 1 0 1 1 0 0 
falls 0 0 1 1 0 1 0 

stubs 3 2 2 1 0 0 1 
blurts 0 0 0 0 2 2 2 

(a) Give a generating function g(x) for the sequence {T0, T1, T2, . . .}. 
Solution. We multiply the generating functions for spills (1+x), falls (1+x), stubs 
(1 + x + x2 + . . . = 1/(1− x)), and blurts (1 + x2 + x4 + . . . = 1/(1− x2)): 

(1 + x)2 1 + x 
= 

2(1− x)(1− x2) (1− x)

(b) Put integers in the boxes that make this equation true: 

g(x) = + 
1 − x (1 − x)2 

Solution. −1, 2 

(c) Put a closed­form expression in the box that makes this equation true: 

Tn = 

Remember that 1/(1− x)2 generates the sequence �1, 2, 3, . . .�. 
Solution. 2(n + 1)− 1 = 2n + 1 
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