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6 Directed Graphs

6.1 Definitions

So far, we have been working with graphs with undirected edges. A directed edge
is an edge where the endpoints are distinguished—one is the head and one is the
tail. In particular, a directed edge is specified as an ordered pair of vertices u, v
and is denoted by .u; v/ or u! v. In this case, u is the tail of the edge and v is the
head. For example, see Figure 6.1.

A graph with directed edges is called a directed graph or digraph.

Definition 6.1.1. A directed graph G D .V;E/ consists of a nonempty set of
nodes V and a set of directed edges E. Each edge e of E is specified by an ordered
pair of vertices u; v 2 V . A directed graph is simple if it has no loops (that is, edges
of the form u! u) and no multiple edges.

Since we will focus on the case of simple directed graphs in this chapter, we will
generally omit the word simple when referring to them. Note that such a graph can
contain an edge u ! v as well as the edge v ! u since these are different edges
(for example, they have a different tail).

Directed graphs arise in applications where the relationship represented by an
edge is 1-way or asymmetric. Examples include: a 1-way street, one person likes
another but the feeling is not necessarily reciprocated, a communication channel
such as a cable modem that has more capacity for downloading than uploading,
one entity is larger than another, and one job needs to be completed before another
job can begin. We’ll see several such examples in this chapter and also in Chapter 7.

Most all of the definitions for undirected graphs from Chapter 5 carry over in a
natural way for directed graphs. For example, two directed graphs G1 D .V1; E1/
and G2 D .V2; E2/ are isomorphic if there exists a bijection f W V1 ! V2 such
that for every pair of vertices u; v 2 V1,

u! v 2 E1 IFF f .u/! f .v/ 2 E2:

u v

e headtail

Figure 6.1 A directed edge e D .u; v/. u is the tail of e and v is the head of e.
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a c

b

d

Figure 6.2 A 4-node directed graph with 6 edges.

Directed graphs have adjacency matrices just like undirected graphs. In the case
of a directed graph G D .V;E/, the adjacency matrix AG D faij g is defined so
that

aij D

(
1 if i ! j 2 E

0 otherwise.

The only difference is that the adjacency matrix for a directed graph is not neces-
sarily symmetric (that is, it may be that ATG ¤ AG).

6.1.1 Degrees

With directed graphs, the notion of degree splits into indegree and outdegree. For
example, indegree.c/ D 2 and outdegree.c/ D 1 for the graph in Figure 6.2. If a
node has outdegree 0, it is called a sink; if it has indegree 0, it is called a source.
The graph in Figure 6.2 has one source (node a) and no sinks.

6.1.2 Directed Walks, Paths, and Cycles

The definitions for (directed) walks, paths, and cycles in a directed graph are similar
to those for undirected graphs except that the direction of the edges need to be
consistent with the order in which the walk is traversed.

Definition 6.1.2. A directed walk (or more simply, a walk) in a directed graph G
is a sequence of vertices v0, v1, . . . , vk and edges

v0 ! v1; v1 ! v2; : : : ; vk�1 ! vk

such that vi�1 ! vi is an edge of G for all i where 0 � i < k. A directed
path (or path) in a directed graph is a walk where the nodes in the walk are all
different. A directed closed walk (or closed walk) in a directed graph is a walk
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where v0 D vk . A directed cycle (or cycle) in a directed graph is a closed walk
where all the vertices vi are different for 0 � i < k.

As with undirected graphs, we will typically refer to a walk in a directed graph
by a sequence of vertices. For example, for the graph in Figure 6.2,

� a, b, c, b, d is a walk,

� a, b, d is a path,

� d , c, b, c, b, d is a closed walk, and

� b, d , c, b is a cycle.

Note that b, c, b is also a cycle for the graph in Figure 6.2. This is a cycle of
length 2. Such cycles are not possible with undirected graphs.

Also note that
c; b; a; d

is not a walk in the graph shown in Figure 6.2, since b ! a is not an edge in this
graph. (You are not allowed to traverse edges in the wrong direction as part of a
walk.)

A path or cycle in a directed graph is said to be Hamiltonian if it visits every
node in the graph. For example, a, b, d , c is the only Hamiltonian path for the
graph in Figure 6.2. The graph in Figure 6.2 does not have a Hamiltonian cycle.

A walk in a directed graph is said to be Eulerian if it contains every edge. The
graph shown in Figure 6.2 does not have an Eulerian walk. Can you see why not?
(Hint: Look at node a.)

6.1.3 Strong Connectivity

The notion of being connected is a little more complicated for a directed graph
than it is for an undirected graph. For example, should we consider the graph in
Figure 6.2 to be connected? There is a path from node a to every other node so on
that basis, we might answer “Yes.” But there is no path from nodes b, c, or d to
node a, and so on that basis, we might answer “No.” For this reason, graph theorists
have come up with the notion of strong connectivity for directed graphs.

Definition 6.1.3. A directed graph G D .V;E/ is said to be strongly connected if
for every pair of nodes u; v 2 V , there is a directed path from u to v (and vice-
versa) in G.

For example, the graph in Figure 6.2 is not strongly connected since there is no
directed path from node b to node a. But if node a is removed, the resulting graph
would be strongly connected.
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Figure 6.3 A 4-node directed acyclic graph (DAG).

A directed graph is said to be weakly connected (or, more simply, connected) if
the corresponding undirected graph (where directed edges u ! v and/or v ! u

are replaced with a single undirected edge fu; vg is connected. For example, the
graph in Figure 6.2 is weakly connected.

6.1.4 DAGs

If an undirected graph does not have any cycles, then it is a tree or a forest. But
what does a directed graph look like if it has no cycles? For example, consider the
graph in Figure 6.3. This graph is weakly connected and has no directed cycles but
it certainly does not look like a tree.

Definition 6.1.4. A directed graph is called a directed acyclic graph (or, DAG) if it
does not contain any directed cycles.

A first glance, DAGs don’t appear to be particularly interesting. But first im-
pressions are not always accurate. In fact, DAGs arise in many scheduling and
optimization problems and they have several interesting properties. We will study
them extensively in Chapter 7.

6.2 Tournament Graphs

Suppose that n players compete in a round-robin tournament and that for every pair
of players u and v, either u beats v or v beats u. Interpreting the results of a round-
robin tournament can be problematic—there might be all sorts of cycles where x
beats y and y beats z, yet z beats x. Who is the best player? Graph theory does not
solve this problem but it can provide some interesting perspectives.
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a
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b

d

e

Figure 6.4 A 5-node tournament graph.

The results of a round-robin tournament can be represented with a tournament
graph. This is a directed graph in which the vertices represent players and the edges
indicate the outcomes of games. In particular, an edge from u to v indicates that
player u defeated player v. In a round-robin tournament, every pair of players has
a match. Thus, in a tournament graph there is either an edge from u to v or an edge
from v to u (but not both) for every pair of distinct vertices u and v. An example
of a tournament graph is shown in Figure 6.4.

6.2.1 Finding a Hamiltonian Path in a Tournament Graph

We’re going to prove that in every round-robin tournament, there exists a ranking
of the players such that each player lost to the player one position higher. For
example, in the tournament corresponding to Figure 6.4, the ranking

a > b > d > e > c

satisfies this criterion, because b lost to a, d lost to b, e lost to d , and c lost to e.
In graph terms, proving the existence of such a ranking amounts to proving that
every tournament graph has a Hamiltonian path.

Theorem 6.2.1. Every tournament graph contains a directed Hamiltonian path.

Proof. We use strong induction. Let P.n/ be the proposition that every tournament
graph with n vertices contains a directed Hamiltonian path.

Base case: P.1/ is trivially true; every graph with a single vertex has a Hamiltonian
path consisting of only that vertex.
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v

T

F

Figure 6.5 The sets T and F in a tournament graph.

Inductive step: For n � 1, we assume that P.1/, . . . , P.n/ are all true and prove
P.n C 1/. Consider a tournament graph G D .V;E/ with n C 1 players. Select
one vertex v arbitrarily. Every other vertex in the tournament either has an edge to
vertex v or an edge from vertex v. Thus, we can partition the remaining vertices
into two corresponding sets, T and F , each containing at most n vertices, where
T D fu j u! v 2 E g and F D fu j v ! u 2 E g. For example, see Figure 6.5.

The vertices in T together with the edges that join them form a smaller tourna-
ment. Thus, by strong induction, there is a Hamiltonian path within T . Similarly,
there is a Hamiltonian path within the tournament on the vertices in F . Joining
the path in T to the vertex v followed by the path in F gives a Hamiltonian path
through the whole tournament. As special cases, if T or F is empty, then so is the
corresponding portion of the path. �

The ranking defined by a Hamiltonian path is not entirely satisfactory. For ex-
ample, in the tournament associated with Figure 6.4, notice that the lowest-ranked
player, c, actually defeated the highest-ranked player, a.

In practice, players are typically ranked according to how many victories they
achieve. This makes sense for several reasons. One not-so-obvious reason is that if
the player with the most victories does not beat some other player v, he is guaran-
teed to have at least beaten a third player who beat v. We’ll prove this fact shortly.
But first, let’s talk about chickens.
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a b

cd

kingking

king not a king

Figure 6.6 A 4-chicken tournament in which chickens a, b, and d are kings.
.

6.2.2 The King Chicken Theorem

Suppose that there are n chickens in a farmyard. Chickens are rather aggressive
birds that tend to establish dominance in relationships by pecking. (Hence the term
“pecking order.”) In particular, for each pair of distinct chickens, either the first
pecks the second or the second pecks the first, but not both. We say that chicken u
virtually pecks chicken v if either:

� Chicken u directly pecks chicken v, or

� Chicken u pecks some other chicken w who in turn pecks chicken v.

A chicken that virtually pecks every other chicken is called a king chicken.
We can model this situation with a tournament digraph. The vertices are chick-

ens, and an edge u! v indicates that chicken u pecks chicken v. In the tournament
shown in Figure 6.6, three of the four chickens are kings. Chicken c is not a king in
this example since it does not peck chicken b and it does not peck any chicken that
pecks chicken b. Chicken a is a king since it pecks chicken d , who in turn pecks
chickens b and c.

Theorem 6.2.2 (King Chicken Theorem). The chicken with the largest outdegree
in an n-chicken tournament is a king.

Proof. By contradiction. Let u be a node in a tournament graph G D .V;E/ with
maximum outdegree and suppose that u is not a king. Let Y D f v j u! v 2 E g

be the set of chickens that chicken u pecks. Then outdegree.u/ D jY j.
Since u is not a king, there is a chicken x … Y (that is, x is not pecked by

chicken u) and that is not pecked by any chicken in Y . Since for any pair of
chickens, one pecks the other, this means that x pecks u as well as every chicken
in Y . This means that

outdegree.x/ D jY j C 1 > outdegree.u/:
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Figure 6.7 A 5-chicken tournament in which every chicken is a king.

But u was assumed to be the node with the largest degree in the tournament, so
we have a contradiction. Hence, u must be a king. �

Theorem 6.2.2 means that if the player with the most victories is defeated by
another player x, then at least he/she defeats some third player that defeats x. In
this sense, the player with the most victories has some sort of bragging rights over
every other player. Unfortunately, as Figure 6.6 illustrates, there can be many other
players with such bragging rights, even some with fewer victories. Indeed, for some
tournaments, it is possible that every player is a “king.” For example, consider the
tournament illustrated in Figure 6.7.

6.3 Communication Networks

While reasoning about chickens pecking each other may be amusing (to mathe-
maticians, at least), the use of directed graphs to model communication networks
is very serious business. In the context of communication problems, vertices repre-
sent computers, processors, or switches, and edges represent wires, fiber, or other
transmission lines through which data flows. For some communication networks,
like the Internet, the corresponding graph is enormous and largely chaotic. Highly
structured networks, such as an array or butterfly, by contrast, find application in
telephone switching systems and the communication hardware inside parallel com-
puters.
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6.3.1 Packet Routing

Whatever architecture is chosen, the goal of a communication network is to get
data from inputs to outputs. In this text, we will focus on a model in which the data
to be communicated is in the form of a packet. In practice, a packet would consist
of a fixed amount of data, and a message (such as a web page or a movie) would
consist of many packets.

For simplicity, we will restrict our attention to the scenario where there is just one
packet at every input and where there is just one packet destined for each output.
We will denote the number of inputs and output by N and we will often assume
that N is a power of two.

We will specify the desired destinations of the packets by a permutation1 of 0,
1, . . . , N � 1. So a permutation, � , defines a routing problem: get a packet that
starts at input i to output �.i/ for 0 � i < N . A routing P that solves a routing
problem � is a set of paths from each input to its specified output. That is, P is a
set of paths, Pi , for i D 0; : : : ; N � 1, where Pi goes from input i to output �.i/.

Of course, the goal is to get all the packets to their destinations as quickly as
possible using as little hardware as possible. The time needed to get the packages
to their destinations depends on several factors, such as how many switches they
need to go through and how many packets will need to cross the same wire. We
will assume that only one packet can cross a wire at a time. The complexity of the
hardware depends on factors such as the number of switches needed and the size of
the switches.

Let’s see how all this works with an example—routing packets on a complete
binary tree.

6.3.2 The Complete Binary Tree

One of the simplest structured communications networks is a complete binary tree.
A complete binary tree with 4 inputs and 4 outputs is shown in Figure 6.8.

In this diagram and many that follow, the squares represent terminals (that is, the
inputs and outputs), and the circles represent switches, which direct packets through
the network. A switch receives packets on incoming edges and relays them forward
along the outgoing edges. Thus, you can imagine a data packet hopping through the
network from an input terminal, through a sequence of switches joined by directed
edges, to an output terminal.

Recall that there is a unique simple path between every pair of vertices in a tree.
So the natural way to route a packet of data from an input terminal to an output
terminal in the complete binary tree is along the corresponding directed path. For

1A permutation of a sequence is a reordering of the sequence.
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in0 out0 in1 out1 in2 out2 in3 out3

Figure 6.8 A 4-input, 4-output complete binary tree. The squares represent termi-
nals (input and output registers) and the circles represent switches. Directed edges
represent communication channels in the network through which data packets can
move. The unique path from input 1 to output 3 is shown in bold.

example, the route of a packet traveling from input 1 to output 3 is shown in bold
in Figure 6.8.

6.3.3 Network Diameter

The delay between the time that a packet arrives at an input and the time that it
reaches its designated output is referred to as latency and it is a critical issue in
communication networks. If congestion is not a factor, then this delay is generally
proportional to the length of the path a packet follows. Assuming it takes one time
unit to travel across a wire, and that there are no additional delays at switches, the
delay of a packet will be the number of wires it crosses going from input to output.2

Generally a packet is routed from input to output using the shortest path possible.
The length of this shortest path is the distance between the input and output. With
a shortest path routing, the worst possible delay is the distance between the input
and output that are farthest apart. This is called the diameter of the network. In
other words, the diameter of a network3 is the maximum length of any shortest

2Latency can also be measured as the number of switches that a packet must pass through when
traveling between the most distant input and output, since switches usually have the biggest impact
on network speed. For example, in the complete binary tree example, the packet traveling from input
1 to output 3 crosses 5 switches, which is 1 less than the number of edges traversed.

3The usual definition of diameter for a general graph (simple or directed) is the largest distance
between any two vertices, but in the context of a communication network, we’re only interested in
the distance between inputs and outputs, not between arbitrary pairs of vertices.
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Figure 6.9 A monster N �N switch.

path between an input and an output. For example, in the complete binary tree
shown in Figure 6.8, the distance from input 1 to output 3 is six. No input and
output are farther apart than this, so the diameter of this tree is also six.

More generally, the diameter of a complete binary tree withN inputs and outputs
is 2 logN C 2. (All logarithms in this lecture—and in most of computer science—
are base 2.) This is quite good, because the logarithm function grows very slowly.
We could connect 220 D 1;048;576 inputs and outputs using a complete binary tree
and the worst input-output delay for any packet would be this diameter, namely,
2 log.220/C 2 D 42.

6.3.4 Switch Size

One way to reduce the diameter of a network (and hence the latency needed to
route packets) is to use larger switches. For example, in the complete binary tree,
most of the switches have three incoming edges and three outgoing edges, which
makes them 3 � 3 switches. If we had 4 � 4 switches, then we could construct a
complete ternary tree with an even smaller diameter. In principle, we could even
connect up all the inputs and outputs via a single monster N �N switch, as shown
in Figure 6.9. In this case, the “network” would consist of a single switch and the
latency would be 2.

This isn’t very productive, however, since we’ve just concealed the original net-
work design problem inside this abstract monster switch. Eventually, we’ll have
to design the internals of the monster switch using simpler components, and then
we’re right back where we started. So the challenge in designing a communication
network is figuring out how to get the functionality of an N �N switch using fixed
size, elementary devices, like 3 � 3 switches.

6.3.5 Switch Count

Another goal in designing a communication network is to use as few switches as
possible. The number of switches in a complete binary tree is 1 C 2 C 4 C 8 C
� � � C N D 2N � 1, since there is 1 switch at the top (the “root switch”), 2 below
it, 4 below those, and so forth. This is nearly the best possible with 3 � 3 switches,
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since at least one switch will be needed for each pair of inputs and outputs.

6.3.6 Congestion

The complete binary tree has a fatal drawback: the root switch is a bottleneck. At
best, this switch must handle an enormous amount of traffic: every packet traveling
from the left side of the network to the right or vice-versa. Passing all these packets
through a single switch could take a long time. At worst, if this switch fails, the
network is broken into two equal-sized pieces.

The traffic through the root depends on the routing problem. For example, if the
routing problem is given by the identity permutation, �.i/ WWD i , then there is an
easy routing P that solves the problem: let Pi be the path from input i up through
one switch and back down to output i . On the other hand, if the problem was given
by �.i/ WWD .N � 1/ � i , then in any solution P for � , each path Pi beginning at
input i must eventually loop all the way up through the root switch and then travel
back down to output .N � 1/ � i .

We can distinguish between a “good” set of paths and a “bad” set based on
congestion. The congestion of a routing, P , is equal to the largest number of paths
in P that pass through a single switch. Generally, lower congestion is better since
packets can be delayed at an overloaded switch.

By extending the notion of congestion to networks, we can also distinguish be-
tween “good” and “bad” networks with respect to bottleneck problems. For each
routing problem, � , for the network, we assume a routing is chosen that optimizes
congestion, that is, that has the minimum congestion among all routings that solve
� . Then the largest congestion that will ever be suffered by a switch will be the
maximum congestion among these optimal routings. This “maxi-min” congestion
is called the congestion of the network.

You may find it helpful to think about max congestion in terms of a value game.
You design your spiffy, new communication network; this defines the game. Your
opponent makes the first move in the game: she inspects your network and specifies
a permutation routing problem that will strain your network. You move second:
given her specification, you choose the precise paths that the packets should take
through your network; you’re trying to avoid overloading any one switch. Then her
next move is to pick a switch with as large as possible a number of packets passing
through it; this number is her score in the competition. The max congestion of
your network is the largest score she can ensure; in other words, it is precisely the
max-value of this game.

For example, if your enemy were trying to defeat the complete binary tree, she
would choose a permutation like �.i/ D .N � 1/� i . Then for every packet i , you
would be forced to select a path Pi;�.i/ passing through the root switch. Then, your

12
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network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

Table 6.1 A summary of the attributes of the complete binary tree.

in0

in1

in2

in3

out3out2out1out0

Figure 6.10 A 4 � 4 2-dimensional array.

enemy would choose the root switch and achieve a score of N . In other words, the
max congestion of the complete binary tree is N—which is horrible!

We have summarized the results of our analysis of the complete binary tree in
Table 6.1. Overall, the complete binary tree does well in every category except the
last—congestion, and that is a killer in practice. Next, we will look at a network
that solves the congestion problem, but at a very high cost.

6.3.7 The 2-d Array

An illustration of the N � N 2-d array (also known as the grid or crossbar) is
shown in Figure 6.10 for the case when N D 4.

The diameter of the 4 � 4 2-d array is 8, which is the number of edges between
input 0 and output 3. More generally, the diameter of a 2-d array withN inputs and
outputs is 2N , which is much worse than the diameter of the complete binary tree
(2 logN C 2). On the other hand, replacing a complete binary tree with a 2-d array
almost eliminates congestion.

Theorem 6.3.1. The congestion of an N -input 2-d array is 2.

Proof. First, we show that the congestion is at most 2. Let � be any permutation.
Define a solution, P , for � to be the set of paths, Pi , where Pi goes to the right

13
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network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2

Table 6.2 Comparing the N -input 2-d array to the N -input complete binary tree.

from input i to column �.i/ and then goes down to output �.i/. In this solution,
the switch in row i and column j encounters at most two packets: the packet
originating at input i and the packet destined for output j .

Next, we show that the congestion is at least 2. This follows because in any
routing problem, � , where �.0/ D 0 and �.N � 1/ D N � 1, two packets must
pass through the lower left switch. �

The characteristics of the 2-d array are recorded in Table 6.2. The crucial entry
in this table is the number of switches, which is N 2. This is a major defect of the
2-d array; a network withN D 1000 inputs would require a million 2�2 switches!
Still, for applications where N is small, the simplicity and low congestion of the
array make it an attractive choice.

6.3.8 The Butterfly

The Holy Grail of switching networks would combine the best properties of the
complete binary tree (low diameter, few switches) and the array (low congestion).
The butterfly is a widely-used compromise between the two. A butterfly network
with N D 8 inputs is shown in Figure 6.11.

The structure of the butterfly is certainly more complicated than that of the com-
plete binary or 2-d array. Let’s see how it is constructed.

All the terminals and switches in the network are inN rows. In particular, input i
is at the left end of row i , and output i is at the right end of row i . Now let’s label
the rows in binary so that the label on row i is the binary number b1b2 : : : blogN
that represents the integer i .

Between the inputs and outputs, there are log.N / C 1 levels of switches, num-
bered from 0 to logN . Each level consists of a column ofN switches, one per row.
Thus, each switch in the network is uniquely identified by a sequence .b1, b2, . . . ,
blogN , l/, where b1b2 : : : blogN is the switch’s row in binary and l is the switch’s
level.

All that remains is to describe how the switches are connected up. The basic
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Figure 6.11 An 8-input/output butterfly.
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connection pattern is expressed below in a compact notation:

%
.b1; b2; : : : blC1; : : : blogN ; l C 1/

.b1; b2; : : : blC1; : : : blogN ; l/
& .b1; b2; : : : blC1; : : : blogN ; l C 1/

This says that there are directed edges from switch .b1; b2; : : : ; blogN ; l/ to two
switches in the next level. One edges leads to the switch in the same row, and the
other edge leads to the switch in the row obtained by inverting the .lC1/st bit blC1.
For example, referring back to the illustration of the size N D 8 butterfly, there is
an edge from switch .0; 0; 0; 0/ to switch (0, 0, 0, 1), which is in the same row, and
to switch .1; 0; 0; 1/, which is in the row obtained by inverting bit l C 1 D 1.

The butterfly network has a recursive structure; specifically, a butterfly of size 2N
consists of two butterflies of size N and one additional level of switches. Each
switch in the additional level has directed edges to a corresponding switch in each
of the smaller butterflies. For example, see Figure 6.12.

Despite the relatively complicated structure of the butterfly, there is a simple way
to route packets through its switches. In particular, suppose that we want to send a
packet from input x1x2 : : : xlogN to output y1y2 : : : ylogN . (Here we are specifying
the input and output numbers in binary.) Roughly, the plan is to “correct” the first
bit on the first level, correct the second bit on the second level, and so forth. Thus,
the sequence of switches visited by the packet is:

.x1; x2; x3; : : : ; xlogN ; 0/! .y1; x2; x3; : : : ; xlogN ; 1/

! .y1; y2; x3; : : : ; xlogN ; 2/

! .y1; y2; y3; : : : ; xlogN ; 3/

! : : :

! .y1; y2; y3; : : : ; ylogN ; logN/

In fact, this is the only path from the input to the output!
The congestion of the butterfly network is about

p
N . More precisely, the con-

gestion is
p
N if N is an even power of 2 and

p
N=2 if N is an odd power of 2.

The task of proving this fact has been left to the problem section.4

A comparison of the butterfly with the complete binary tree and the 2-d array is
provided in Table 6.3. As you can see, the butterfly has lower congestion than the
complete binary tree. And it uses fewer switches and has lower diameter than the

4The routing problems that result in
p
N congestion do arise in practice, but for most routing

problems, the congestion is much lower (around logN ), which is one reason why the butterfly is
useful in practice.
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in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

000
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levels
0 1 2 3

Figure 6.12 An N -input butterfly contains two N=2-input butterflies (shown in
the dashed boxes). Each switch on the first level is adjacent to a corresponding
switch in each of the sub-butterflies. For example, we have used dashed lines to
show these edges for the node .0; 1; 1; 0/.
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network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2
butterfly logN C 2 2 � 2 N.log.N /C 1/

p
N or

p
N=2

Table 6.3 A comparison of the N -input butterfly with the N -input complete bi-
nary tree and the N -input 2-d array.

in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

Figure 6.13 The 8-input Beneš network.

array. However, the butterfly does not capture the best qualities of each network,
but rather is a compromise somewhere between the two. So our quest for the Holy
Grail of routing networks goes on.

6.3.9 Beneš Network

In the 1960’s, a researcher at Bell Labs named Václav Beneš had a remarkable idea.
He obtained a marvelous communication network with congestion 1 by placing
two butterflies back-to-back. For example, the 8-input Beneš network is shown in
Figure 6.13.

Putting two butterflies back-to-back roughly doubles the number of switches and
the diameter of a single butterfly, but it completely eliminates congestion problems!
The proof of this fact relies on a clever induction argument that we’ll come to in a

18
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network diameter switch size # switches congestion
complete binary tree 2 logN C 2 3 � 3 2N � 1 N

2-D array 2N 2 � 2 N 2 2
butterfly logN C 2 2 � 2 N.log.N /C 1/

p
N or

p
N=2

Beneš 2 logN C 1 2 � 2 2N logN 1

Table 6.4 A comparison of the N -input Beneš network with the N -input com-
plete binary tree, 2-d array, and butterfly.

in0

in1

out0

out1

Figure 6.14 The 2-input Beneš network.

moment. Let’s first see how the Beneš network stacks up against the other networks
we have been studying. As you can see in Table 6.4, the Beneš network has small
size and diameter, and completely eliminates congestion. The Holy Grail of routing
networks is in hand!

Theorem 6.3.2. The congestion of the N -input Beneš network is 1 for any N that
is a power of 2.

Proof. We use induction. Let P.a/ be the proposition that the congestion of the
2a-input Beneš network is 1.

Base case (a D 1): We must show that the congestion of the 21-input Beneš net-
work is 1. The network is shown in Figure 6.14.

There are only two possible permutation routing problems for a 2-input network.
If �.0/ D 0 and �.1/ D 1, then we can route both packets along the straight edges.
On the other hand, if �.0/ D 1 and �.1/ D 0, then we can route both packets along
the diagonal edges. In both cases, a single packet passes through each switch.

Inductive step: We must show that P.a/ implies P.aC1/ where a � 1. Thus, we
assume that the congestion of a 2a-input Beneš network is 1 in order to prove that
the congestion of a 2aC1-input Beneš network is also 1.

Digression
Time out! Let’s work through an example, develop some intuition, and then com-
plete the proof. Notice that inside a Beneš network of size 2N lurk two Beneš
subnetworks of size N . This follows from our earlier observation that a butterfly

19
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in1 out1

in0 out0

in2 out2

in3 out3

in4 out4

in5 out5

in6 out6

in7 out7

Figure 6.15 A 2N -input Beneš network contains twoN -input Beneš networks—
shown here for N D 4.

of size 2N contains two butterflies of size N . In the Beneš network shown in Fig-
ure 6.15 with N D 8 inputs and outputs, the two 4-input/output subnetworks are
shown in dashed boxes.

By the inductive assumption, the subnetworks can each route an arbitrary per-
mutation with congestion 1. So if we can guide packets safely through just the first
and last levels, then we can rely on induction for the rest! Let’s see how this works
in an example. Consider the following permutation routing problem:

�.0/ D 1 �.4/ D 3

�.1/ D 5 �.5/ D 6

�.2/ D 4 �.6/ D 0

�.3/ D 7 �.7/ D 2

We can route each packet to its destination through either the upper subnetwork
or the lower subnetwork. However, the choice for one packet may constrain the
choice for another. For example, we can not route the packets at inputs 0 and 4 both
through the same network since that would cause two packets to collide at a single
switch, resulting in congestion. So one packet must go through the upper network
and the other through the lower network. Similarly, the packets at inputs 1 and 5,
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2
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Figure 6.16 The beginnings of a constraint graph for our packet routing problem.
Adjacent packets cannot be routed using the same sub-Beneš network.

1 5

0

4

2

6

7 3

Figure 6.17 The updated constraint graph.

2 and 6, and 3 and 7 must be routed through different networks. Let’s record these
constraints in a graph. The vertices are the 8 packets (labeled according to their
input position). If two packets must pass through different networks, then there is
an edge between them. The resulting constraint graph is illustrated in Figure 6.16.
Notice that at most one edge is incident to each vertex.

The output side of the network imposes some further constraints. For example,
the packet destined for output 0 (which is packet 6) and the packet destined for
output 4 (which is packet 2) can not both pass through the same network since that
would require both packets to arrive from the same switch. Similarly, the packets
destined for outputs 1 and 5, 2 and 6, and 3 and 7 must also pass through different
switches. We can record these additional constraints in our constraint graph with
gray edges, as is illustrated in Figure 6.17.

Notice that at most one new edge is incident to each vertex. The two lines drawn
between vertices 2 and 6 reflect the two different reasons why these packets must
be routed through different networks. However, we intend this to be a simple graph;
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the two lines still signify a single edge.
Now here’s the key insight: a 2-coloring of the graph corresponds to a solution

to the routing problem. In particular, suppose that we could color each vertex either
red or blue so that adjacent vertices are colored differently. Then all constraints are
satisfied if we send the red packets through the upper network and the blue packets
through the lower network.

The only remaining question is whether the constraint graph is 2-colorable. For-
tunately, this is easy to verify:

Lemma 6.3.3. If the edges of an undirected graph G can be grouped into two sets
such that every vertex is incident to at most 1 edge from each set, then the graph is
2-colorable.

Proof. Since the two sets of edges may overlap, let’s call an edge that is in both sets
a doubled edge. Note that no other edge can be incident to either of the endpoints
of a doubled edge, since that endpoint would then be incident to two edges from
the same set. This means that doubled edges form connected components with 2
nodes. Such connected components are easily colored with 2 colors and so we can
henceforth ignore them and focus on the remaining nodes and edges, which form a
simple graph.

By Theorem 5.6.2, we know that if a simple graph has no odd cycles, then it is
2-colorable. So all we need to do is show that every cycle in G has even length.
This is easy since any cycle inG must traverse successive edges that alternate from
one set to the other. In particular, a closed walk must traverse a path of alternating
edges that begins and ends with edges from different sets. This means that the cycle
has to be of even length. �

For example, a 2-coloring of the constraint graph in Figure 6.17 is shown in
Figure 6.18. The solution to this graph-coloring problem provides a start on the
packet routing problem. We can complete the routing in the two smaller Beneš
networks by induction. With this insight in hand, the digression is over and we can
now complete the proof of Theorem 6.3.2.

Proof of Theorem 6.3.2 (continued). Let � be an arbitrary permutation of 0, 1, . . . ,
N � 1. Let G be the graph whose vertices are packet numbers 0; 1; : : : ; N � 1 and
whose edges come from the union of these two sets:

E1WWDf fu; vg j ju � vj D N=2 g; and

E2WWDf fu;wg j j�.u/ � �.w/j D N=2 g:

Now any vertex, u, is incident to at most two edges: a unique edge fu; vg 2 E1 and
a unique edge fu;wg 2 E2. So according to Lemma 6.3.3, there is a 2-coloring for
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Figure 6.18 A 2-coloring of the constraint graph in Figure 6.17.

the vertices of G. Now route packets of one color through the upper subnetwork
and packets of the other color through the lower subnetwork. Since for each edge in
E1, one vertex goes to the upper subnetwork and the other to the lower subnetwork,
there will not be any conflicts in the first level. Since for each edge inE2, one vertex
comes from the upper subnetwork and the other from the lower subnetwork, there
will not be any conflicts in the last level. We can complete the routing within each
subnetwork by the induction hypothesis P.n/. �
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