
“mcs-ftl” — 2010/9/8 — 0:40 — page 43 — #49

3 Induction
Now that you understand the basics of how to prove that a proposition is true,
it is time to equip you with the most powerful methods we have for establishing
truth: the Well Ordering Principle, the Induction Rule, and Strong Induction. These
methods are especially useful when you need to prove that a predicate is true for all
natural numbers.

Although the three methods look and feel different, it turns out that they are
equivalent in the sense that a proof using any one of the methods can be automat-
ically reformatted so that it becomes a proof using any of the other methods. The
choice of which method to use is up to you and typically depends on whichever
seems to be the easiest or most natural for the problem at hand.

3.1 The Well Ordering Principle

Every nonempty set of nonnegative integers has a smallest element.

This statement is known as The Well Ordering Principle. Do you believe it?
Seems sort of obvious, right? But notice how tight it is: it requires a nonempty
set—it’s false for the empty set which has no smallest element because it has no
elements at all! And it requires a set of nonnegative integers—it’s false for the
set of negative integers and also false for some sets of nonnegative rationals—for
example, the set of positive rationals. So, the Well Ordering Principle captures
something special about the nonnegative integers.

3.1.1 Well Ordering Proofs

While the Well Ordering Principle may seem obvious, it’s hard to see offhand why
it is useful. But in fact, it provides one of the most important proof rules in discrete
mathematics.

In fact, looking back, we took the Well Ordering Principle for granted in proving
that
p
2 is irrational. That proof assumed that for any positive integers m and n,

the fraction m=n can be written in lowest terms, that is, in the form m0=n0 where
m0 and n0 are positive integers with no common factors. How do we know this is
always possible?

1

“mcs-ftl” — 2010/9/8 — 0:40 — page 44 — #50

Chapter 3 Induction

Suppose to the contrary1 that there were m; n 2 ZC such that the fraction m=n
cannot be written in lowest terms. Now let C be the set of positive integers that are
numerators of such fractions. Then m 2 C , so C is nonempty. Therefore, by Well
Ordering, there must be a smallest integer, m0 2 C . So by definition of C , there is
an integer n0 > 0 such that

the fraction
m0

n0
cannot be written in lowest terms.

This means that m0 and n0 must have a common factor, p > 1. But

m0=p

n0=p
D
m0

n0
;

so any way of expressing the left hand fraction in lowest terms would also work for
m0=n0, which implies

the fraction
m0=p

n0=p
cannot be in written in lowest terms either.

So by definition of C , the numerator, m0=p, is in C . But m0=p < m0, which
contradicts the fact that m0 is the smallest element of C .

Since the assumption that C is nonempty leads to a contradiction, it follows that
C must be empty. That is, that there are no numerators of fractions that can’t be
written in lowest terms, and hence there are no such fractions at all.

We’ve been using the Well Ordering Principle on the sly from early on!

3.1.2 Template for Well Ordering Proofs

More generally, to prove that “P.n/ is true for all n 2 N” using the Well Ordering
Principle, you can take the following steps:

� Define the set, C , of counterexamples to P being true. Namely, define2

C WWD fn 2 N j P.n/ is falseg:

� Use a proof by contradiction and assume that C is nonempty.

� By the Well Ordering Principle, there will be a smallest element, n, in C .

� Reach a contradiction (somehow)—often by showing how to use n to find
another member of C that is smaller than n. (This is the open-ended part of
the proof task.)

� Conclude that C must be empty, that is, no counterexamples exist. QED
1This means that you are about to see an informal proof by contradiction.
2As we learned in Section 2.6.2, the notation fn j P.n/ is false g means “the set of all elements

n, for which P.n/ is false.

2

“mcs-ftl” — 2010/9/8 — 0:40 — page 45 — #51

3.1. The Well Ordering Principle

3.1.3 Examples

Let’s use this this template to prove

Theorem 3.1.1.
1C 2C 3C � � � C n D n.nC 1/=2 (3.1)

for all nonnegative integers, n.

First, we better address of a couple of ambiguous special cases before they trip
us up:

� If n D 1, then there is only one term in the summation, and so 1C 2C 3C
� � � C n is just the term 1. Don’t be misled by the appearance of 2 and 3 and
the suggestion that 1 and n are distinct terms!

� If n � 0, then there are no terms at all in the summation. By convention, the
sum in this case is 0.

So while the dots notation is convenient, you have to watch out for these special
cases where the notation is misleading! (In fact, whenever you see the dots, you
should be on the lookout to be sure you understand the pattern, watching out for
the beginning and the end.)

We could have eliminated the need for guessing by rewriting the left side of (3.1)
with summation notation:

nX
iD1

i or
X
1�i�n

i:

Both of these expressions denote the sum of all values taken by the expression to
the right of the sigma as the variable, i , ranges from 1 to n. Both expressions make
it clear what (3.1) means when n D 1. The second expression makes it clear that
when n D 0, there are no terms in the sum, though you still have to know the
convention that a sum of no numbers equals 0 (the product of no numbers is 1, by
the way).

OK, back to the proof:

Proof. By contradiction and use of the Well Ordering Principle. Assume that the
theorem is false. Then, some nonnegative integers serve as counterexamples to it.
Let’s collect them in a set:

C WWD fn 2 N j 1C 2C 3C � � � C n ¤
n.nC 1/

2
g:

3

“mcs-ftl” — 2010/9/8 — 0:40 — page 46 — #52

Chapter 3 Induction

By our assumption that the theorem admits counterexamples, C is a nonempty set
of nonnegative integers. So, by the Well Ordering Principle, C has a minimum
element, call it c. That is, c is the smallest counterexample to the theorem.

Since c is the smallest counterexample, we know that (3.1) is false for n D c but
true for all nonnegative integers n < c. But (3.1) is true for n D 0, so c > 0. This
means c � 1 is a nonnegative integer, and since it is less than c, equation (3.1) is
true for c � 1. That is,

1C 2C 3C � � � C .c � 1/ D
.c � 1/c

2
:

But then, adding c to both sides we get

1C 2C 3C � � � C .c � 1/C c D
.c � 1/c

2
C c D

c2 � c C 2c

2
D
c.c C 1/

2
;

which means that (3.1) does hold for c, after all! This is a contradiction, and we
are done. �

Here is another result that can be proved using Well Ordering. It will be useful
in Chapter 4 when we study number theory and cryptography.

Theorem 3.1.2. Every natural number can be factored as a product of primes.

Proof. By contradiction and Well Ordering. Assume that the theorem is false and
let C be the set of all integers greater than one that cannot be factored as a product
of primes. We assume that C is not empty and derive a contradiction.

If C is not empty, there is a least element, n 2 C , by Well Ordering. The n can’t
be prime, because a prime by itself is considered a (length one) product of primes
and no such products are in C .

So n must be a product of two integers a and b where 1 < a; b < n. Since a
and b are smaller than the smallest element in C , we know that a; b … C . In other
words, a can be written as a product of primes p1p2 � � �pk and b as a product of
primes q1 � � � ql . Therefore, n D p1 � � �pkq1 � � � ql can be written as a product of
primes, contradicting the claim that n 2 C . Our assumption that C is not empty
must therefore be false. �

3.2 Ordinary Induction

Induction is by far the most powerful and commonly-used proof technique in dis-
crete mathematics and computer science. In fact, the use of induction is a defining

4

“mcs-ftl” — 2010/9/8 — 0:40 — page 47 — #53

3.2. Ordinary Induction

characteristic of discrete—as opposed to continuous—mathematics. To understand
how it works, suppose there is a professor who brings to class a bottomless bag of
assorted miniature candy bars. She offers to share the candy in the following way.
First, she lines the students up in order. Next she states two rules:

1. The student at the beginning of the line gets a candy bar.

2. If a student gets a candy bar, then the following student in line also gets a
candy bar.

Let’s number the students by their order in line, starting the count with 0, as usual
in computer science. Now we can understand the second rule as a short description
of a whole sequence of statements:

� If student 0 gets a candy bar, then student 1 also gets one.

� If student 1 gets a candy bar, then student 2 also gets one.

� If student 2 gets a candy bar, then student 3 also gets one.
:::

Of course this sequence has a more concise mathematical description:

If student n gets a candy bar, then student nC 1 gets a candy bar, for
all nonnegative integers n.

So suppose you are student 17. By these rules, are you entitled to a miniature candy
bar? Well, student 0 gets a candy bar by the first rule. Therefore, by the second
rule, student 1 also gets one, which means student 2 gets one, which means student
3 gets one as well, and so on. By 17 applications of the professor’s second rule,
you get your candy bar! Of course the rules actually guarantee a candy bar to every
student, no matter how far back in line they may be.

3.2.1 A Rule for Ordinary Induction

The reasoning that led us to conclude that every student gets a candy bar is essen-
tially all there is to induction.

5

“mcs-ftl” — 2010/9/8 — 0:40 — page 48 — #54

Chapter 3 Induction

The Principle of Induction.

Let P.n/ be a predicate. If

� P.0/ is true, and

� P.n/ IMPLIES P.nC 1/ for all nonnegative integers, n,

then

� P.m/ is true for all nonnegative integers, m.

Since we’re going to consider several useful variants of induction in later sec-
tions, we’ll refer to the induction method described above as ordinary induction
when we need to distinguish it. Formulated as a proof rule, this would be

Rule. Induction Rule

P.0/; 8n 2 N: P.n/ IMPLIES P.nC 1/

8m 2 N: P.m/

This general induction rule works for the same intuitive reason that all the stu-
dents get candy bars, and we hope the explanation using candy bars makes it clear
why the soundness of the ordinary induction can be taken for granted. In fact, the
rule is so obvious that it’s hard to see what more basic principle could be used to
justify it.3 What’s not so obvious is how much mileage we get by using it.

3.2.2 A Familiar Example

Ordinary induction often works directly in proving that some statement about non-
negative integers holds for all of them. For example, here is the formula for the
sum of the nonnegative integers that we already proved (equation (3.1)) using the
Well Ordering Principle:

Theorem 3.2.1. For all n 2 N,

1C 2C 3C � � � C n D
n.nC 1/

2
(3.2)

This time, let’s use the Induction Principle to prove Theorem 3.2.1.
Suppose that we define predicate P.n/ to be the equation (3.2). Recast in terms

of this predicate, the theorem claims that P.n/ is true for all n 2 N. This is great,
because the induction principle lets us reach precisely that conclusion, provided we
establish two simpler facts:

3But see section 3.2.7.

6

“mcs-ftl” — 2010/9/8 — 0:40 — page 49 — #55

3.2. Ordinary Induction

� P.0/ is true.

� For all n 2 N, P.n/ IMPLIES P.nC 1/.

So now our job is reduced to proving these two statements. The first is true
because P.0/ asserts that a sum of zero terms is equal to 0.0 C 1/=2 D 0, which
is true by definition. The second statement is more complicated. But remember
the basic plan for proving the validity of any implication from Section 2.3: assume
the statement on the left and then prove the statement on the right. In this case, we
assume P.n/ in order to prove P.nC 1/, which is the equation

1C 2C 3C � � � C nC .nC 1/ D
.nC 1/.nC 2/

2
: (3.3)

These two equations are quite similar; in fact, adding .n C 1/ to both sides of
equation (3.2) and simplifying the right side gives the equation (3.3):

1C 2C 3C � � � C nC .nC 1/ D
n.nC 1/

2
C .nC 1/

D
.nC 2/.nC 1/

2

Thus, if P.n/ is true, then so is P.n C 1/. This argument is valid for every non-
negative integer n, so this establishes the second fact required by the induction
principle. Therefore, the induction principle says that the predicate P.m/ is true
for all nonnegative integers, m, so the theorem is proved.

3.2.3 A Template for Induction Proofs

The proof of Theorem 3.2.1 was relatively simple, but even the most complicated
induction proof follows exactly the same template. There are five components:

1. State that the proof uses induction. This immediately conveys the overall
structure of the proof, which helps the reader understand your argument.

2. Define an appropriate predicate P.n/. The eventual conclusion of the in-
duction argument will be that P.n/ is true for all nonnegative n. Thus, you
should define the predicate P.n/ so that your theorem is equivalent to (or
follows from) this conclusion. Often the predicate can be lifted straight from
the proposition that you are trying to prove, as in the example above. The
predicate P.n/ is called the induction hypothesis. Sometimes the induction
hypothesis will involve several variables, in which case you should indicate
which variable serves as n.

7

“mcs-ftl” — 2010/9/8 — 0:40 — page 50 — #56

Chapter 3 Induction

3. Prove that P.0/ is true. This is usually easy, as in the example above. This
part of the proof is called the base case or basis step.

4. Prove that P.n/ implies P.nC 1/ for every nonnegative integer n. This
is called the inductive step. The basic plan is always the same: assume that
P.n/ is true and then use this assumption to prove thatP.nC1/ is true. These
two statements should be fairly similar, but bridging the gap may require
some ingenuity. Whatever argument you give must be valid for every non-
negative integer n, since the goal is to prove the implications P.0/! P.1/,
P.1/! P.2/, P.2/! P.3/, etc. all at once.

5. Invoke induction. Given these facts, the induction principle allows you to
conclude that P.n/ is true for all nonnegative n. This is the logical capstone
to the whole argument, but it is so standard that it’s usual not to mention it
explicitly.

Always be sure to explicitly label the base case and the inductive step. It will make
your proofs clearer, and it will decrease the chance that you forget a key step (such
as checking the base case).

3.2.4 A Clean Writeup

The proof of Theorem 3.2.1 given above is perfectly valid; however, it contains a
lot of extraneous explanation that you won’t usually see in induction proofs. The
writeup below is closer to what you might see in print and should be prepared to
produce yourself.

Proof of Theorem 3.2.1. We use induction. The induction hypothesis, P.n/, will
be equation (3.2).

Base case: P.0/ is true, because both sides of equation (3.2) equal zero when
n D 0.

Inductive step: Assume that P.n/ is true, where n is any nonnegative integer.
Then

1C 2C 3C � � � C nC .nC 1/ D
n.nC 1/

2
C .nC 1/ (by induction hypothesis)

D
.nC 1/.nC 2/

2
(by simple algebra)

which proves P.nC 1/.
So it follows by induction that P.n/ is true for all nonnegative n. �

8

“mcs-ftl” — 2010/9/8 — 0:40 — page 51 — #57

3.2. Ordinary Induction

2n

2n

Figure 3.1 A 2n � 2n courtyard for n D 3.

Induction was helpful for proving the correctness of this summation formula, but
not helpful for discovering it in the first place. Tricks and methods for finding such
formulas will be covered in Part III of the text.

3.2.5 A More Challenging Example

During the development of MIT’s famous Stata Center, as costs rose further and
further beyond budget, there were some radical fundraising ideas. One rumored
plan was to install a big courtyard with dimensions 2n�2n (as shown in Figure 3.1
for the case where n D 3) and to have one of the central squares4 be occupied by a
statue of a wealthy potential donor (who we will refer to as “Bill”, for the purposes
of preserving anonymity). A complication was that the building’s unconventional
architect, Frank Gehry, was alleged to require that only special L-shaped tiles (show
in Figure 3.2) be used for the courtyard. It was quickly determined that a courtyard
meeting these constraints exists, at least for n D 2. (See Figure 3.3.) But what
about for larger values of n? Is there a way to tile a 2n � 2n courtyard with L-
shaped tiles around a statue in the center? Let’s try to prove that this is so.

Theorem 3.2.2. For all n � 0 there exists a tiling of a 2n � 2n courtyard with Bill
in a central square.

Proof. (doomed attempt) The proof is by induction. Let P.n/ be the proposition
that there exists a tiling of a 2n � 2n courtyard with Bill in the center.

4In the special case n D 0, the whole courtyard consists of a single central square; otherwise,
there are four central squares.

9

“mcs-ftl” — 2010/9/8 — 0:40 — page 52 — #58

Chapter 3 Induction

Figure 3.2 The special L-shaped tile.

B

Figure 3.3 A tiling using L-shaped tiles for n D 2 with Bill in a center square.

10

“mcs-ftl” — 2010/9/8 — 0:40 — page 53 — #59

3.2. Ordinary Induction

Base case: P.0/ is true because Bill fills the whole courtyard.
Inductive step: Assume that there is a tiling of a 2n � 2n courtyard with Bill in

the center for some n � 0. We must prove that there is a way to tile a 2nC1 � 2nC1

courtyard with Bill in the center �

Now we’re in trouble! The ability to tile a smaller courtyard with Bill in the
center isn’t much help in tiling a larger courtyard with Bill in the center. We haven’t
figured out how to bridge the gap between P.n/ and P.nC 1/.

So if we’re going to prove Theorem 3.2.2 by induction, we’re going to need some
other induction hypothesis than simply the statement about n that we’re trying to
prove.

When this happens, your first fallback should be to look for a stronger induction
hypothesis; that is, one which implies your previous hypothesis. For example,
we could make P.n/ the proposition that for every location of Bill in a 2n � 2n

courtyard, there exists a tiling of the remainder.
This advice may sound bizarre: “If you can’t prove something, try to prove some-

thing grander!” But for induction arguments, this makes sense. In the inductive
step, where you have to prove P.n/ IMPLIES P.n C 1/, you’re in better shape
because you can assume P.n/, which is now a more powerful statement. Let’s see
how this plays out in the case of courtyard tiling.

Proof (successful attempt). The proof is by induction. Let P.n/ be the proposition
that for every location of Bill in a 2n � 2n courtyard, there exists a tiling of the
remainder.

Base case: P.0/ is true because Bill fills the whole courtyard.
Inductive step: Assume that P.n/ is true for some n � 0; that is, for every

location of Bill in a 2n� 2n courtyard, there exists a tiling of the remainder. Divide
the 2nC1�2nC1 courtyard into four quadrants, each 2n�2n. One quadrant contains
Bill (B in the diagram below). Place a temporary Bill (X in the diagram) in each of
the three central squares lying outside this quadrant as shown in Figure 3.4.

Now we can tile each of the four quadrants by the induction assumption. Replac-
ing the three temporary Bills with a single L-shaped tile completes the job. This
proves that P.n/ implies P.nC 1/ for all n � 0. Thus P.m/ is true for all n 2 N,
and the theorem follows as a special case where we put Bill in a central square. �

This proof has two nice properties. First, not only does the argument guarantee
that a tiling exists, but also it gives an algorithm for finding such a tiling. Second,
we have a stronger result: if Bill wanted a statue on the edge of the courtyard, away
from the pigeons, we could accommodate him!

Strengthening the induction hypothesis is often a good move when an induction
proof won’t go through. But keep in mind that the stronger assertion must actually

11

“mcs-ftl” — 2010/9/8 — 0:40 — page 54 — #60

Chapter 3 Induction

X
X

B

X

2n 2n

2n

2n

Figure 3.4 Using a stronger inductive hypothesis to prove Theorem 3.2.2.

be true; otherwise, there isn’t much hope of constructing a valid proof! Sometimes
finding just the right induction hypothesis requires trial, error, and insight. For
example, mathematicians spent almost twenty years trying to prove or disprove
the conjecture that “Every planar graph is 5-choosable”5. Then, in 1994, Carsten
Thomassen gave an induction proof simple enough to explain on a napkin. The
key turned out to be finding an extremely clever induction hypothesis; with that in
hand, completing the argument was easy!

3.2.6 A Faulty Induction Proof

If we have done a good job in writing this text, right about now you should be
thinking, “Hey, this induction stuff isn’t so hard after all—just show P.0/ is true
and that P.n/ implies P.n C 1/ for any number n.” And, you would be right,
although sometimes when you start doing induction proofs on your own, you can
run into trouble. For example, we will now attempt to ruin your day by using
induction to “prove” that all horses are the same color. And just when you thought
it was safe to skip class and work on your robot program instead. Bummer!

False Theorem. All horses are the same color.

Notice that no n is mentioned in this assertion, so we’re going to have to re-
formulate it in a way that makes an n explicit. In particular, we’ll (falsely) prove
that

55-choosability is a slight generalization of 5-colorability. Although every planar graph is 4-
colorable and therefore 5-colorable, not every planar graph is 4-choosable. If this all sounds like
nonsense, don’t panic. We’ll discuss graphs, planarity, and coloring in Part II of the text.

12

“mcs-ftl” — 2010/9/8 — 0:40 — page 55 — #61

3.2. Ordinary Induction

False Theorem 3.2.3. In every set of n � 1 horses, all the horses are the same
color.

This a statement about all integers n � 1 rather � 0, so it’s natural to use a
slight variation on induction: prove P.1/ in the base case and then prove that P.n/
implies P.nC1/ for all n � 1 in the inductive step. This is a perfectly valid variant
of induction and is not the problem with the proof below.

Bogus proof. The proof is by induction on n. The induction hypothesis, P.n/, will
be

In every set of n horses, all are the same color. (3.4)

Base case: (n D 1). P.1/ is true, because in a set of horses of size 1, there’s
only one horse, and this horse is definitely the same color as itself.

Inductive step: Assume that P.n/ is true for some n � 1. That is, assume that
in every set of n horses, all are the same color. Now consider a set of nC 1 horses:

h1; h2; : : : ; hn; hnC1

By our assumption, the first n horses are the same color:

h1; h2; : : : ; hn;„ ƒ‚ …
same color

hnC1

Also by our assumption, the last n horses are the same color:

h1; h2; : : : ; hn; hnC1„ ƒ‚ …
same color

So h1 is the same color as the remaining horses besides hnC1—that is, h2, . . . ,
hn)—and likewise hnC1 is the same color as the remaining horses besides h1–h2,
. . . , hn. Since h1 and hnC1 are the same color as h2, . . . , hn, horses h1, h2, . . . ,
hnC1 must all be the same color, and so P.n C 1/ is true. Thus, P.n/ implies
P.nC 1/.

By the principle of induction, P.n/ is true for all n � 1. �

We’ve proved something false! Is math broken? Should we all become poets?
No, this proof has a mistake.

The first error in this argument is in the sentence that begins “So h1 is the same
color as the remaining horses besides hnC1—h2, . . . , hn). . . ”

The “: : : ” notation in the expression “h1, h2, . . . , hn, hnC1” creates the im-
pression that there are some remaining horses (namely h2, . . . , hn) besides h1 and
hnC1. However, this is not true when n D 1. In that case, h1, h2, . . . , hn, hnC1 =

13

“mcs-ftl” — 2010/9/8 — 0:40 — page 56 — #62

Chapter 3 Induction

h1, h2 and there are no remaining horses besides h1 and hnC1. So h1 and h2 need
not be the same color!

This mistake knocks a critical link out of our induction argument. We proved
P.1/ and we correctly proved P.2/ �! P.3/, P.3/ �! P.4/, etc. But we failed
to prove P.1/ �! P.2/, and so everything falls apart: we can not conclude that
P.2/, P.3/, etc., are true. And, of course, these propositions are all false; there are
sets of n non-uniformly-colored horses for all n � 2.

Students sometimes claim that the mistake in the proof is because P.n/ is false
for n � 2, and the proof assumes something false, namely, P.n/, in order to prove
P.nC 1/. You should think about how to explain to such a student why this claim
would get no credit on a Math for Computer Science exam.

3.2.7 Induction versus Well Ordering

The Induction Rule looks nothing like the Well Ordering Principle, but these two
proof methods are closely related. In fact, as the examples above suggest, we can
take any Well Ordering proof and reformat it into an Induction proof. Conversely,
it’s equally easy to take any Induction proof and reformat it into a Well Ordering
proof.

So what’s the difference? Well, sometimes induction proofs are clearer because
they resemble recursive procedures that reduce handling an input of size nC 1 to
handling one of size n. On the other hand, Well Ordering proofs sometimes seem
more natural, and also come out slightly shorter. The choice of method is really a
matter of style and is up to you.

3.3 Invariants

One of the most important uses of induction in computer science involves proving
that a program or process preserves one or more desirable properties as it proceeds.
A property that is preserved through a series of operations or steps is known as an
invariant. Examples of desirable invariants include properties such as a variable
never exceeding a certain value, the altitude of a plane never dropping below 1,000
feet without the wingflaps and landing gear being deployed, and the temperature of
a nuclear reactor never exceeding the threshold for a meltdown.

We typically use induction to prove that a proposition is an invariant. In particu-
lar, we show that the proposition is true at the beginning (this is the base case) and
that if it is true after t steps have been taken, it will also be true after step tC1 (this
is the inductive step). We can then use the induction principle to conclude that the

14

“mcs-ftl” — 2010/9/8 — 0:40 — page 57 — #63

3.3. Invariants

proposition is indeed an invariant, namely, that it will always hold.

3.3.1 A Simple Example: The Diagonally-Moving Robot

Invariants are useful in systems that have a start state (or starting configuration)
and a well-defined series of steps during which the system can change state.6 For
example, suppose that you have a robot that can walk across diagonals on an infinite
2-dimensional grid. The robot starts at position .0; 0/ and at each step it moves up
or down by 1 unit vertically and left or right by 1 unit horizontally. To be clear, the
robot must move by exactly 1 unit in each dimension during each step, since it can
only traverse diagonals.

In this example, the state of the robot at any time can be specified by a coordinate
pair .x; y/ that denotes the robot’s position. The start state is .0; 0/ since it is given
that the robot starts at that position. After the first step, the robot could be in states
.1; 1/, .1;�1/, .�1; 1/, or .�1;�1/. After two steps, there are 9 possible states for
the robot, including .0; 0/.

Can the robot ever reach position .1; 0/?
After playing around with the robot for a bit, it will become apparent that the

robot will never be able to reach position .1; 0/. This is because the robot can only
reach positions .x; y/ for which x C y is even. This crucial observation quickly
leads to the formulation of a predicate

P.t/ WW if the robot is in state .x; y/ after t steps, then x C y is even

which we can prove to be an invariant by induction.

Theorem 3.3.1. The sum of robot’s coordinates is always even.

Proof. We will prove that P is an invariant by induction.
P.0/ is true since the robot starts at .0; 0/ and 0C 0 is even.
Assume that P.t/ is true for the inductive step. Let .x; y/ be the position of the

robot after t steps. Since P.t/ is assumed to be true, we know that x C y is even.
There are four cases to consider for step t C 1, depending on which direction the
robot moves.

Case 1 The robot moves to .x C 1; y C 1/. Then the sum of the coordinates is
x C y C 2, which is even, and so P.t C 1/ is true.

Case 2 The robot moves to .xC1; y�1/. The the sum of the coordinates is xCy,
which is even, and so P.t C 1/ is true.

6Such systems are known as state machines and we will study them in greater detail in Chapter 8.

15

“mcs-ftl” — 2010/9/8 — 0:40 — page 58 — #64

Chapter 3 Induction

Case 3 The robot moves to .x�1; yC1/. The the sum of the coordinates is xCy,
as with Case 2, and so P.t C 1/ is true.

Case 4 The robot moves to .x � 1; y � 1/. The the sum of the coordinates is
x C y � 2, which is even, and so P.t C 1/ is true.

In every case, P.t C 1/ is true and so we have proved P.t/ IMPLIES P.t C 1/ and
so, by induction, we know that P.t/ is true for all t � 0. �

Corollary 3.3.2. The robot can never reach position .1; 0/.

Proof. By Theorem 3.3.1, we know the robot can only reach positions with coor-
dinates that sum to an even number, and thus it cannot reach position .1; 0/. �

Since this was the first time we proved that a predicate was an invariant, we were
careful to go through all four cases in gory detail. As you become more experienced
with such proofs, you will likely become more brief as well. Indeed, if we were
going through the proof again at a later point in the text, we might simply note that
the sum of the coordinates after step tC1 can be only xCy, xCyC2 or xCy�2
and therefore that the sum is even.

3.3.2 The Invariant Method

In summary, if you would like to prove that some property NICE holds for every
step of a process, then it is often helpful to use the following method:

� Define P.t/ to be the predicate that NICE holds immediately after step t .

� Show that P.0/ is true, namely that NICE holds for the start state.

� Show that
8t 2 N: P.t/ IMPLIES P.t C 1/;

namely, that for any t � 0, if NICE holds immediately after step t , it must
also hold after the following step.

3.3.3 A More Challenging Example: The 15-Puzzle

In the late 19th century, Noyes Chapman, a postmaster in Canastota, New York,
invented the 15-puzzle7, which consisted of a 4 � 4 grid containing 15 numbered
blocks in which the 14-block and the 15-block were out of order. The objective was
to move the blocks one at a time into an adjacent hole in the grid so as to eventually

7Actually, there is a dispute about who really invented the 15-puzzle. Sam Lloyd, a well-known
puzzle designer, claimed to be the inventor, but this claim has since been discounted.

16

“mcs-ftl” — 2010/9/8 — 0:40 — page 59 — #65

3.3. Invariants

141513

11109 12

765 8

321 4

(a)

141513

11109

12

765 8

321 4

(b)

Figure 3.5 The 15-puzzle in its starting configuration (a) and after the 12-block
is moved into the hole below (b).

151413

11109 12

765 8

321 4

Figure 3.6 The desired final configuration for the 15-puzzle. Can it be achieved
by only moving one block at a time into an adjacent hole?

get all 15 blocks into their natural order. A picture of the 15-puzzle is shown in
Figure 3.5 along with the configuration after the 12-block is moved into the hole
below. The desired final configuration is shown in Figure 3.6.

The 15-puzzle became very popular in North America and Europe and is still
sold in game and puzzle shops today. Prizes were offered for its solution, but
it is doubtful that they were ever awarded, since it is impossible to get from the
configuration in Figure 3.5(a) to the configuration in Figure 3.6 by only moving
one block at a time into an adjacent hole. The proof of this fact is a little tricky so
we have left it for you to figure out on your own! Instead, we will prove that the
analogous task for the much easier 8-puzzle cannot be performed. Both proofs, of
course, make use of the Invariant Method.

17

“mcs-ftl” — 2010/9/8 — 0:40 — page 60 — #66

Chapter 3 Induction

GH

FED

CBA

(a)

GH

FED

CBA

(b)

GEH

FD

CBA

(c)

Figure 3.7 The 8-Puzzle in its initial configuration (a) and after one (b) and
two (c) possible moves.

3.3.4 The 8-Puzzle

In the 8-Puzzle, there are 8 lettered tiles (A–H) and a blank square arranged in a
3 � 3 grid. Any lettered tile adjacent to the blank square can be slid into the blank.
For example, a sequence of two moves is illustrated in Figure 3.7.

In the initial configuration shown in Figure 3.7(a), the G and H tiles are out of
order. We can find a way of swapping G and H so that they are in the right order,
but then other letters may be out of order. Can you find a sequence of moves that
puts these two letters in correct order, but returns every other tile to its original
position? Some experimentation suggests that the answer is probably “no,” and we
will prove that is so by finding an invariant, namely, a property of the puzzle that is
always maintained, no matter how you move the tiles around. If we can then show
that putting all the tiles in the correct order would violate the invariant, then we can
conclude that the puzzle cannot be solved.

Theorem 3.3.3. No sequence of legal moves transforms the configuration in Fig-
ure 3.7(a) into the configuration in Figure 3.8.

We’ll build up a sequence of observations, stated as lemmas. Once we achieve
a critical mass, we’ll assemble these observations into a complete proof of Theo-
rem 3.3.3.

Define a row move as a move in which a tile slides horizontally and a column
move as one in which the tile slides vertically. Assume that tiles are read top-
to-bottom and left-to-right like English text, that is, the natural order, defined as
follows: So when we say that two tiles are “out of order”, we mean that the larger
letter precedes the smaller letter in this natural order.

Our difficulty is that one pair of tiles (the G and H) is out of order initially. An
immediate observation is that row moves alone are of little value in addressing this

18

“mcs-ftl” — 2010/9/8 — 0:40 — page 61 — #67

3.3. Invariants

HG

FED

CBA

Figure 3.8 The desired final configuration of the 8-puzzle.

87 9

654

321

problem:

Lemma 3.3.4. A row move does not change the order of the tiles.

Proof. A row move moves a tile from cell i to cell i C 1 or vice versa. This tile
does not change its order with respect to any other tile. Since no other tile moves,
there is no change in the order of any of the other pairs of tiles. �

Let’s turn to column moves. This is the more interesting case, since here the
order can change. For example, the column move in Figure 3.9 changes the relative
order of the pairs .G;H/ and .G;E/.

Lemma 3.3.5. A column move changes the relative order of exactly two pairs of
tiles.

Proof. Sliding a tile down moves it after the next two tiles in the order. Sliding a
tile up moves it before the previous two tiles in the order. Either way, the relative
order changes between the moved tile and each of the two tiles it crosses. The
relative order between any other pair of tiles does not change. �

These observations suggest that there are limitations on how tiles can be swapped.
Some such limitation may lead to the invariant we need. In order to reason about
swaps more precisely, let’s define a term referring to a pair of items that are out of
order:

19

“mcs-ftl” — 2010/9/8 — 0:40 — page 62 — #68

Chapter 3 Induction

EH G

FD

CBA

(a)

EH

GFD

CBA

(b)

Figure 3.9 An example of a column move in which the G-tile is moved into the
adjacent hole above. In this case, G changes order with E and H .

Definition 3.3.6. A pair of letters L1 and L2 is an inversion if L1 precedes L2 in
the alphabet, but L1 appears after L2 in the puzzle order.

For example, in the puzzle below, there are three inversions: .D; F /, .E; F /,
.E;G/.

HE

GDF

CBA

There is exactly one inversion .G;H/ in the start state:

GH

FED

CBA

20

“mcs-ftl” — 2010/9/8 — 0:40 — page 63 — #69

3.3. Invariants

There are no inversions in the end state:

HG

FED

CBA

Let’s work out the effects of row and column moves in terms of inversions.

Lemma 3.3.7. During a move, the number of inversions can only increase by 2,
decrease by 2, or remain the same.

Proof. By Lemma 3.3.4, a row move does not change the order of the tiles, and so
a row move does not change the number of inversions.

By Lemma 3.3.5, a column move changes the relative order of exactly 2 pairs
of tiles. There are three cases: If both pairs were originally in order, then the
number of inversions after the move goes up by 2. If both pairs were originally
inverted, then the number of inversions after the move goes down by 2. If one
pair was originally inverted and the other was originally in order, then the number
of inversions stays the same (since changing the former pair makes the number of
inversions smaller by 1, and changing the latter pair makes the number of inversions
larger by 1). �

We are almost there. If the number of inversions only changes by 2, then what
about the parity of the number of inversions? (The “parity” of a number refers to
whether the number is even or odd. For example, 7 and 5 have odd parity, and 18
and 0 have even parity.)

Since adding or subtracting 2 from a number does not change its parity, we have
the following corollary to Lemma 3.3.7:

Corollary 3.3.8. Neither a row move nor a column move ever changes the parity
of the number of inversions.

Now we can bundle up all these observations and state an invariant, that is, a
property of the puzzle that never changes, no matter how you slide the tiles around.

Lemma 3.3.9. In every configuration reachable from the configuration shown in
Figure 3.7(a), the parity of the number of inversions is odd.

21

“mcs-ftl” — 2010/9/8 — 0:40 — page 64 — #70

Chapter 3 Induction

Proof. We use induction. Let P.n/ be the proposition that after n moves from the
above configuration, the parity of the number of inversions is odd.

Base case: After zero moves, exactly one pair of tiles is inverted (G and H),
which is an odd number. Therefore P.0/ is true.

Inductive step: Now we must prove that P.n/ implies P.n C 1/ for all n � 0.
So assume that P.n/ is true; that is, after n moves the parity of the number of
inversions is odd. Consider any sequence of nC 1 moves m1, . . . , mnC1. By the
induction hypothesis P.n/, we know that the parity after moves m1, . . . , mn is
odd. By Corollary 3.3.8, we know that the parity does not change during mnC1.
Therefore, the parity of the number of inversions after movesm1, . . . ,mnC1 is odd,
so we have that P.nC 1/ is true.

By the principle of induction, P.n/ is true for all n � 0. �

The theorem we originally set out to prove is restated below. With our invariant
in hand, the proof is simple.

Theorem. No sequence of legal moves transforms the board below on the left into
the board below on the right.

GH

FED

CBA

HG

FED

CBA

Proof. In the target configuration on the right, the total number of inversions is
zero, which is even. Therefore, by Lemma 3.3.9, the target configuration is un-
reachable. �

3.4 Strong Induction

Strong induction is a variation of ordinary induction that is useful when the pred-
icate P.n C 1/ naturally depends on P.a/ for values of a < n. As with ordinary
induction, strong induction is useful to prove that a predicate P.n/ is true for all
n 2 N.

22

“mcs-ftl” — 2010/9/8 — 0:40 — page 65 — #71

3.4. Strong Induction

3.4.1 A Rule for Strong Induction

Principle of Strong Induction. Let P.n/ be a predicate. If

� P.0/ is true, and

� for all n 2 N, P.0/, P.1/, . . . , P.n/ together imply P.nC 1/,

then P.n/ is true for all n 2 N.

The only change from the ordinary induction principle is that strong induction
allows you to assume more stuff in the inductive step of your proof! In an ordinary
induction argument, you assume that P.n/ is true and try to prove that P.n C 1/
is also true. In a strong induction argument, you may assume that P.0/, P.1/, . . . ,
and P.n/ are all true when you go to prove P.nC1/. These extra assumptions can
only make your job easier. Hence the name: strong induction.

Formulated as a proof rule, strong induction is

Rule. Strong Induction Rule

P.0/; 8n 2 N:
�
P.0/ AND P.1/ AND : : : AND P.m/

�
IMPLIES P.nC 1/�

8m 2 N: P.m/

The template for strong induction proofs is identical to the template given in
Section 3.2.3 for ordinary induction except for two things:

� you should state that your proof is by strong induction, and

� you can assume that P.0/, P.1/, . . . , P.n/ are all true instead of only P.n/
during the inductive step.

3.4.2 Some Examples

Products of Primes

As a first example, we’ll use strong induction to re-prove Theorem 3.1.2 which we
previously proved using Well Ordering.

Lemma 3.4.1. Every integer greater than 1 is a product of primes.

Proof. We will prove Lemma 3.4.1 by strong induction, letting the induction hy-
pothesis, P.n/, be

n is a product of primes:

So Lemma 3.4.1 will follow if we prove that P.n/ holds for all n � 2.

23

“mcs-ftl” — 2010/9/8 — 0:40 — page 66 — #72

Chapter 3 Induction

Base Case: (n D 2) P.2/ is true because 2 is prime, and so it is a length one
product of primes by convention.

Inductive step: Suppose that n � 2 and that i is a product of primes for every
integer i where 2 � i < nC 1. We must show that P.nC 1/ holds, namely, that
nC 1 is also a product of primes. We argue by cases:

If nC 1 is itself prime, then it is a length one product of primes by convention,
and so P.nC 1/ holds in this case.

Otherwise, nC 1 is not prime, which by definition means nC 1 D km for some
integers k;m such that 2 � k;m < nC 1. Now by the strong induction hypothesis,
we know that k is a product of primes. Likewise, m is a product of primes. It
follows immediately that km D n is also a product of primes. Therefore, P.nC 1/
holds in this case as well.

So P.n C 1/ holds in any case, which completes the proof by strong induction
that P.n/ holds for all n � 2.

�

Making Change

The country Inductia, whose unit of currency is the Strong, has coins worth 3Sg
(3 Strongs) and 5Sg. Although the Inductians have some trouble making small
change like 4Sg or 7Sg, it turns out that they can collect coins to make change for
any number that is at least 8 Strongs.

Strong induction makes this easy to prove for n C 1 � 11, because then .n C
1/ � 3 � 8, so by strong induction the Inductians can make change for exactly
.nC1/�3 Strongs, and then they can add a 3Sg coin to get .nC1/Sg. So the only
thing to do is check that they can make change for all the amounts from 8 to 10Sg,
which is not too hard to do.

Here’s a detailed writeup using the official format:

Proof. We prove by strong induction that the Inductians can make change for any
amount of at least 8Sg. The induction hypothesis, P.n/ will be:

There is a collection of coins whose value is nC 8 Strongs.

Base case: P.0/ is true because a 3Sg coin together with a 5Sg coin makes 8Sg.
Inductive step: We assume P.m/ holds for all m � n, and prove that P.nC 1/

holds. We argue by cases:
Case (nC 1 = 1): We have to make .nC 1/C 8 D 9Sg. We can do this using

three 3Sg coins.
Case (nC 1 = 2): We have to make .nC 1/C 8 D 10Sg. Use two 5Sg coins.

24

“mcs-ftl” — 2010/9/8 — 0:40 — page 67 — #73

3.4. Strong Induction

Stack Heights Score
10

5 5 25 points
5 3 2 6

4 3 2 1 4

2 3 2 1 2 4

2 2 2 1 2 1 2

1 2 2 1 2 1 1 1

1 1 2 1 2 1 1 1 1

1 1 1 1 2 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Total Score D 45 points

Figure 3.10 An example of the stacking game with n D 10 boxes. On each line,
the underlined stack is divided in the next step.

Case (nC 1 � 3): Then 0 � n � 2 � n, so by the strong induction hypothesis,
the Inductians can make change for n � 2 Strong. Now by adding a 3Sg coin, they
can make change for .nC 1/Sg.

Since n � 0, we know that n C 1 � 1 and thus that the three cases cover
every possibility. Since P.nC 1/ is true in every case, we can conclude by strong
induction that for all n � 0, the Inductians can make change for nC8 Strong. That
is, they can make change for any number of eight or more Strong.

�

The Stacking Game

Here is another exciting game that’s surely about to sweep the nation!
You begin with a stack of n boxes. Then you make a sequence of moves. In each

move, you divide one stack of boxes into two nonempty stacks. The game ends
when you have n stacks, each containing a single box. You earn points for each
move; in particular, if you divide one stack of height a C b into two stacks with
heights a and b, then you score ab points for that move. Your overall score is the
sum of the points that you earn for each move. What strategy should you use to
maximize your total score?

As an example, suppose that we begin with a stack of n D 10 boxes. Then the
game might proceed as shown in Figure 3.10. Can you find a better strategy?

Let’s use strong induction to analyze the unstacking game. We’ll prove that your
score is determined entirely by the number of boxes—your strategy is irrelevant!

25

“mcs-ftl” — 2010/9/8 — 0:40 — page 68 — #74

Chapter 3 Induction

Theorem 3.4.2. Every way of unstacking n blocks gives a score of n.n � 1/=2
points.

There are a couple technical points to notice in the proof:

� The template for a strong induction proof mirrors the template for ordinary
induction.

� As with ordinary induction, we have some freedom to adjust indices. In this
case, we prove P.1/ in the base case and prove that P.1/; : : : ; P.n/ imply
P.nC 1/ for all n � 1 in the inductive step.

Proof. The proof is by strong induction. Let P.n/ be the proposition that every
way of unstacking n blocks gives a score of n.n � 1/=2.

Base case: If n D 1, then there is only one block. No moves are possible, and
so the total score for the game is 1.1 � 1/=2 D 0. Therefore, P.1/ is true.

Inductive step: Now we must show that P.1/, . . . , P.n/ imply P.n C 1/ for
all n � 1. So assume that P.1/, . . . , P.n/ are all true and that we have a stack of
nC 1 blocks. The first move must split this stack into substacks with positive sizes
a and b where aC b D nC 1 and 0 < a; b � n. Now the total score for the game
is the sum of points for this first move plus points obtained by unstacking the two
resulting substacks:

total score D (score for 1st move)

C (score for unstacking a blocks)

C (score for unstacking b blocks)

D ab C
a.a � 1/

2
C
b.b � 1/

2
by P.a/ and P.b/

D
.aC b/2 � .aC b/

2
D
.aC b/..aC b/ � 1/

2

D
.nC 1/n

2

This shows that P.1/, P.2/, . . . , P.n/ imply P.nC 1/.
Therefore, the claim is true by strong induction. �

3.4.3 Strong Induction versus Induction

Is strong induction really “stronger” than ordinary induction? It certainly looks that
way. After all, you can assume a lot more when proving the induction step. But
actually, any proof using strong induction can be reformatted into a proof using
ordinary induction—you just need to use a “stronger” induction hypothesis.

26

“mcs-ftl” — 2010/9/8 — 0:40 — page 69 — #75

3.5. Structural Induction

Which method should you use? Whichever you find easier. But whichever
method you choose, be sure to state the method up front so that the reader can
understand and more easily verify your proof.

3.5 Structural Induction

Up to now, we have focussed on induction over the natural numbers. But the idea
of induction is far more general—it can be applied to a much richer class of sets.
In particular, it is especially useful in connection with sets or data types that are
defined recursively.

3.5.1 Recursive Data Types

Recursive data types play a central role in programming. They are specified by
recursive definitions that say how to build something from its parts. Recursive
definitions have two parts:

� Base case(s) that don’t depend on anything else.

� Constructor case(s) that depend on previous cases.

Let’s see how this works in a couple of examples: Strings of brackets and expres-
sion evaluation.

Example 1: Strings of Brackets

Let brkts be the set of all sequences (or strings) of square brackets. For example,
the following two strings are in brkts:

[]] [[[[[]] and [[[]] []] [] (3.5)

Definition 3.5.1. The set brkts of strings of brackets can be defined recursively
as follows:

� Base case: The empty string, �, is in brkts.

� Constructor case: If s 2 brkts, then s] and s[are in brkts.

Here, we’re writing s] to indicate the string that is the sequence of brackets (if
any) in the string s, followed by a right bracket; similarly for s[.

A string s 2 brkts is called a matched string if its brackets can be “matched
up” in the usual way. For example, the left hand string in 3.5 is not matched because
its second right bracket does not have a matching left bracket. The string on the
right is matched. The set of matched strings can be defined recursively as follows.

27

“mcs-ftl” — 2010/9/8 — 0:40 — page 70 — #76

Chapter 3 Induction

Definition 3.5.2. Recursively define the set, RecMatch, of strings as follows:

� Base case: � 2 RecMatch.

� Constructor case: If s; t 2 RecMatch, then

[s] t 2 RecMatch:

Here we’re writing [s] t to indicate the string that starts with a left bracket,
followed by the sequence of brackets (if any) in the string s, followed by a right
bracket, and ending with the sequence of brackets in the string t .

Using this definition, we can see that � 2 RecMatch by the Base case, so

[�] � D [] 2 RecMatch

by the Constructor case. So now,

[�] [] D [] [] 2 RecMatch (letting s D �; t D [])

[[]] � D [[]] 2 RecMatch (letting s D [] ; t D �)

[[]] [] 2 RecMatch (letting s D [] ; t D [])

are also strings in RecMatch by repeated applications of the Constructor case.
In general, RecMatch will contain precisely the strings with matching brack-

ets. This is because the constructor case is, in effect, identifying the bracket that
matches the leftmost bracket in any string. Since that matching bracket is unique,
this method of constructing RecMatch gives a unique way of constructing any string
with matched brackets. This will turn out to be important later when we talk about
ambiguity.

Strings with matched brackets arise in the area of expression parsing. A brief
history of the advances in this field is provided in the box on the next page.

Example 2: Arithmetic Expressions

Expression evaluation is a key feature of programming languages, and recognition
of expressions as a recursive data type is a key to understanding how they can be
processed.

To illustrate this approach we’ll work with a toy example: arithmetic expressions
like 3x2 C 2x C 1 involving only one variable, “x.” We’ll refer to the data type of
such expressions as Aexp. Here is its definition:

Definition 3.5.3. The set Aexp is defined recursively as follows:

� Base cases:

28

“mcs-ftl” — 2010/9/8 — 0:40 — page 71 — #77

3.5. Structural Induction

Expression Parsing

During the early development of computer science in the 1950’s and 60’s, creation
of effective programming language compilers was a central concern. A key aspect
in processing a program for compilation was expression parsing. The problem
was to take in an expression like

x C y � z2 � y C 7

and put in the brackets that determined how it should be evaluated—should it be

ŒŒx C y� � z2 � y�C 7; or;

x C Œy � z2 � Œy C 7��; or;

Œx C Œy � z2��� Œy C 7�;

or . . . ?
The Turing award (the “Nobel Prize” of computer science) was ultimately be-
stowed on Robert Floyd, for, among other things, being discoverer of a simple
program that would insert the brackets properly.
In the 70’s and 80’s, this parsing technology was packaged into high-level
compiler-compilers that automatically generated parsers from expression gram-
mars. This automation of parsing was so effective that the subject stopped de-
manding attention and largely disappeared from the computer science curriculum
by the 1990’s.

29

“mcs-ftl” — 2010/9/8 — 0:40 — page 72 — #78

Chapter 3 Induction

1. The variable, x, is in Aexp.

2. The arabic numeral, k, for any nonnegative integer, k, is in Aexp.

� Constructor cases: If e; f 2 Aexp, then

3. .e C f / 2 Aexp. The expression .e C f / is called a sum. The Aexp’s
e and f are called the components of the sum; they’re also called the
summands.

4. .e�f / 2 Aexp. The expression .e�f / is called a product. The Aexp’s
e and f are called the components of the product; they’re also called
the multiplier and multiplicand.

5. �.e/ 2 Aexp. The expression �.e/ is called a negative.

Notice that Aexp’s are fully parenthesized, and exponents aren’t allowed. So the
Aexp version of the polynomial expression 3x2C2xC1would officially be written
as

..3 � .x � x//C ..2 � x/C 1//: (3.6)

These parentheses and �’s clutter up examples, so we’ll often use simpler expres-
sions like “3x2 C 2x C 1” instead of (3.6). But it’s important to recognize that
3x2 C 2x C 1 is not an Aexp; it’s an abbreviation for an Aexp.

3.5.2 Structural Induction on Recursive Data Types

Structural induction is a method for proving that some property, P , holds for all the
elements of a recursively-defined data type. The proof consists of two steps:

� Prove P for the base cases of the definition.

� Prove P for the constructor cases of the definition, assuming that it is true
for the component data items.

A very simple application of structural induction proves that (recursively-defined)
matched strings always have an equal number of left and right brackets. To do this,
define a predicate, P , on strings s 2 brkts:

P.s/ WWD s has an equal number of left and right brackets:

Theorem 3.5.4. P.s/ holds for all s 2 RecMatch.

Proof. By structural induction on the definition that s 2 RecMatch, using P.s/ as
the induction hypothesis.

30

“mcs-ftl” — 2010/9/8 — 0:40 — page 73 — #79

3.5. Structural Induction

Base case: P.�/ holds because the empty string has zero left and zero right
brackets.

Constructor case: For r D [s] t , we must show that P.r/ holds, given that
P.s/ and P.t/ holds. So let ns , nt be, respectively, the number of left brackets in
s and t . So the number of left brackets in r is 1C ns C nt .

Now from the respective hypotheses P.s/ and P.t/, we know that the number
of right brackets in s is ns , and likewise, the number of right brackets in t is nt . So
the number of right brackets in r is 1C ns C nt , which is the same as the number
of left brackets. This proves P.r/. We conclude by structural induction that P.s/
holds for all s 2 RecMatch. �

3.5.3 Functions on Recursively-defined Data Types

A Quick Review of Functions

A function assigns an element of one set, called the domain, to elements of another
set, called the codomain. The notation

f W A! B

indicates that f is a function with domain, A, and codomain, B . The familiar
notation “f .a/ D b” indicates that f assigns the element b 2 B to a. Here b
would be called the value of f at argument a.

Functions are often defined by formulas as in:

f1.x/ WWD
1

x2

where x is a real-valued variable, or

f2.y; z/ WWD y10yz

where y and z range over binary strings, or

f3.x; n/ WWD the pair .n; x/

where n ranges over the nonnegative integers.
A function with a finite domain could be specified by a table that shows the value

of the function at each element of the domain. For example, a function f4.P;Q/
where P and Q are propositional variables is specified by:

P Q f4.P;Q/

T T T
T F F
F T T
F F T

31

“mcs-ftl” — 2010/9/8 — 0:40 — page 74 — #80

Chapter 3 Induction

Notice that f4 could also have been described by a formula:

f4.P;Q/ WWD ŒP IMPLIES Q�:

A function might also be defined by a procedure for computing its value at any
element of its domain, or by some other kind of specification. For example, define
f5.y/ to be the length of a left to right search of the bits in the binary string y until
a 1 appears, so

f5.0010/ D 3;

f5.100/ D 1;

f5.0000/ is undefined:

Notice that f5 does not assign a value to a string of just 0’s. This illustrates an
important fact about functions: they need not assign a value to every element in the
domain. In fact this came up in our first example f1.x/ D 1=x2, which does not
assign a value to 0. So in general, functions may be partial functions, meaning that
there may be domain elements for which the function is not defined. If a function
is defined on every element of its domain, it is called a total function.

It’s often useful to find the set of values a function takes when applied to the
elements in a set of arguments. So if f W A! B , and S is a subset of A, we define
f .S/ to be the set of all the values that f takes when it is applied to elements of S .
That is,

f .S/ WWD fb 2 B j f .s/ D b for some s 2 Sg:

For example, if we let Œr; s� denote the interval from r to s on the real line, then
f1.Œ1; 2�/ D Œ1=4; 1�.

For another example, let’s take the “search for a 1” function, f5. If we let X be
the set of binary words which start with an even number of 0’s followed by a 1,
then f5.X/ would be the odd nonnegative integers.

Applying f to a set, S , of arguments is referred to as “applying f pointwise to
S”, and the set f .S/ is referred to as the image of S under f .8 The set of values
that arise from applying f to all possible arguments is called the range of f . That
is,

range.f / WWD f .domain.f //:

8There is a picky distinction between the function f which applies to elements of A and the
function which applies f pointwise to subsets of A, because the domain of f is A, while the domain
of pointwise-f is P.A/. It is usually clear from context whether f or pointwise-f is meant, so there
is no harm in overloading the symbol f in this way.

32

“mcs-ftl” — 2010/9/8 — 0:40 — page 75 — #81

3.5. Structural Induction

Recursively-Defined Functions

Functions on recursively-defined data types can be defined recursively using the
same cases as the data type definition. Namely, to define a function, f , on a recur-
sive data type, define the value of f for the base cases of the data type definition,
and then define the value of f in each constructor case in terms of the values of f
on the component data items.

For example, consider the function

eval W Aexp � Z! Z;

which evaluates any expression in Aexp using the value n for x. It is useful to
express this function with a recursive definition as follows:

Definition 3.5.5. The evaluation function, eval W Aexp � Z! Z, is defined recur-
sively on expressions, e 2 Aexp, as follows. Let n be any integer.

� Base cases:

1. Case[e is x]
eval.x; n/ WWD n:

(The value of the variable, x, is given to be n.)

2. Case[e is k]
eval.k; n/ WWD k:

(The value of the numeral k is the integer k, no matter what value x
has.)

� Constructor cases:

3. Case[e is .e1 C e2/]

eval..e1 C e2/; n/ WWD eval.e1; n/C eval.e2; n/:

4. Case[e is .e1 � e2/]

eval..e1 � e2/; n/ WWD eval.e1; n/ � eval.e2; n/:

5. Case[e is �.e1/]

eval.�.e1/; n/ WWD � eval.e1; n/:

33

“mcs-ftl” — 2010/9/8 — 0:40 — page 76 — #82

Chapter 3 Induction

For example, here’s how the recursive definition of eval would arrive at the value
of 3C x2 when x is 2:

eval..3C .x � x//; 2/ D eval.3; 2/C eval..x � x/; 2/ (by Def 3.5.5.3)

D 3C eval..x � x/; 2/ (by Def 3.5.5.2)

D 3C .eval.x; 2/ � eval.x; 2// (by Def 3.5.5.4)

D 3C .2 � 2/ (by Def 3.5.5.1)

D 3C 4 D 7:

A Second Example

We next consider the function on matched strings that specifies the depth of the
matched brackets in any string. This function can be specified recursively as fol-
lows:

Definition 3.5.6. The depth d.s/ of a string s 2 RecMatch is defined recursively
by the rules:

� d.�/ WWD 0:

� d.[s] t / WWDmaxfd.s/C 1; d.t/g

Ambiguity

When a recursive definition of a data type allows the same element to be constructed
in more than one way, the definition is said to be ambiguous. A function defined
recursively from an ambiguous definition of a data type will not be well-defined
unless the values specified for the different ways of constructing the element agree.

We were careful to choose an unambiguous definition of RecMatch to ensure that
functions defined recursively on the definition would always be well-defined. As
an example of the trouble an ambiguous definition can cause, let’s consider another
definition of the matched strings.

Definition 3.5.7. Define the set, M � brkts recursively as follows:

� Base case: � 2M ,

� Constructor cases: if s; t 2M , then the strings [s] and st are also in M .

By using structural induction, it is possible to prove that M D RecMatch. In-
deed, the definition ofM might even seem like a more natural way to define the set

34

“mcs-ftl” — 2010/9/8 — 0:40 — page 77 — #83

3.5. Structural Induction

of matched strings than the definition of RecMatch. But the definition of M is am-
biguous, while the (perhaps less natural) definition of RecMatch is unambiguous.
Does this ambiguity matter? Yes, it can. For example, suppose we defined

f .�/ WWD 1;

f . [s] / WWD 1C f .s/;
f .st/ WWD .f .s/C 1/ � .f .t/C 1/ for st ¤ �:

Let a be the string [[]] 2M built by two successive applications of the firstM
constructor starting with �. Next let

b WWD aa

D [[]] [[]]

and

c WWD bb

D [[]] [[]] [[]] [[]]

each be built by successive applications of the second M constructor starting with
a.

Alternatively, we can build ba from the second constructor with s D b and
t D a, and then get to c using the second constructor with s D ba and t D a.

By applying these rules to the first way of constructing c, f .a/ D 2, f .b/ D
.2 C 1/.2 C 1/ D 9, and f .c/ D f .bb/ D .9 C 1/.9 C 1/ D 100. Using the
second way of constructing c, we find that f .ba/ D .9 C 1/.2 C 1/ D 27 and
f .c/ D f .ba a/ D .27C 1/.2C 1/ D 84. The outcome is that f .c/ is defined to
be both 100 and 84, which shows that the rules defining f are inconsistent.

Note that structural induction remains a sound proof method even for ambiguous
recursive definitions, which is why it is easy to prove that M D RecMatch.

3.5.4 Recursive Functions on N—Structural Induction versus
Ordinary Induction

The nonnegative integers can be understood as a recursive data type.

Definition 3.5.8. The set, N, is a data type defined recursivly as:

� Base Case: 0 2 N.

� Constructor Case: If n 2 N, then the successor, nC 1, of n is in N.

35

“mcs-ftl” — 2010/9/8 — 0:40 — page 78 — #84

Chapter 3 Induction

This means that ordinary induction is a special case of structural induction on the
recursive Definition 3.5.8. Conversely, most proofs based on structural induction
that you will encounter in computer science can also be reformatted into proofs that
use only ordinary induction. The decision as to which technique to use is up to you,
but it will often be the case that structural induction provides the easiest approach
when you are dealing with recursive data structures or functions.

Definition 3.5.8 also justifies the familiar recursive definitions of functions on
the nonnegative integers. Here are some examples.

The Factorial Function

The factorial function is often written “nŠ.” You will be seeing it a lot in Parts III
and IV of this text. For now, we’ll use the notation fac.n/ and define it recursively
as follows:

� Base Case: fac.0/ WWD 1.

� Constructor Case: fac.nC 1/ WWD .nC 1/ � fac.n/ for n � 0.

The Fibonacci numbers.

Fibonacci numbers arose out of an effort 800 years ago to model population growth.
We will study them at some length in Part III. The nth Fibonacci number, fib.n/,
can be defined recursively by:

� Base Cases: fib.0/ WWD 0 and fib.1/ WWD 1

� Constructor Case: fib.n/ WWD fib.n � 1/C fib.n � 2/ for n � 2.

Here the recursive step starts at n D 2 with base cases for n D 0 and n D 1. This
is needed since the recursion relies on two previous values.

What is fib.4/? Well, fib.2/ D fib.1/Cfib.0/ D 1, fib.3/ D fib.2/Cfib.1/ D 2,
so fib.4/ D 3. The sequence starts out 0; 1; 1; 2; 3; 5; 8; 13; 21; : : : .

Sum-notation

Let “S.n/” abbreviate the expression “
Pn
iD1 f .i/.” We can recursively define S.n/

with the rules

� Base Case: S.0/ WWD 0.

� Constructor Case: S.nC 1/ WWD f .nC 1/C S.n/ for n � 0.

36

“mcs-ftl” — 2010/9/8 — 0:40 — page 79 — #85

3.5. Structural Induction

Ill-formed Function Definitions

There are some blunders to watch out for when defining functions recursively. Be-
low are some function specifications that resemble good definitions of functions on
the nonnegative integers, but they aren’t.

Definition 3.5.9.
f1.n/ WWD 2C f1.n � 1/: (3.7)

This “definition” has no base case. If some function, f1, satisfied (3.7), so would
a function obtained by adding a constant to the value of f1. So equation (3.7) does
not uniquely define an f1.

Definition 3.5.10.

f2.n/ WWD

(
0; if n D 0;
f2.nC 1/ otherwise:

(3.8)

This “definition” has a base case, but still doesn’t uniquely determine f2. Any
function that is 0 at 0 and constant everywhere else would satisfy the specification,
so (3.8) also does not uniquely define anything.

In a typical programming language, evaluation of f2.1/ would begin with a re-
cursive call of f2.2/, which would lead to a recursive call of f2.3/, . . . with recur-
sive calls continuing without end. This “operational” approach interprets (3.8) as
defining a partial function, f2, that is undefined everywhere but 0.

Definition 3.5.11.

f3.n/ WWD

8̂<̂
:
0; if n is divisible by 2,
1; if n is divisible by 3,
2; otherwise.

(3.9)

This “definition” is inconsistent: it requires f3.6/ D 0 and f3.6/ D 1, so (3.9)
doesn’t define anything.

A Mysterious Function

Mathematicians have been wondering about the following function specification
for many years:

f4.n/ WWD

8̂<̂
:
1; if n � 1;
f4.n=2/ if n > 1 is even;
f4.3nC 1/ if n > 1 is odd:

(3.10)

37

“mcs-ftl” — 2010/9/8 — 0:40 — page 80 — #86

Chapter 3 Induction

For example, f4.3/ D 1 because

f4.3/ WWDf4.10/ WWDf4.5/ WWDf4.16/ WWDf4.8/ WWDf4.4/ WWDf4.2/ WWDf4.1/ WWD1:

The constant function equal to 1 will satisfy (3.10), but it’s not known if another
function does too. The problem is that the third case specifies f4.n/ in terms of f4
at arguments larger than n, and so cannot be justified by induction on N. It’s known
that any f4 satisfying (3.10) equals 1 for all n up to over a billion.

38

MIT OpenCourseWare
http://ocw.mit.edu

6.042J / 18.062J Mathematics for Computer Science
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

