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Midterm 

Problem 1. [10 points] 

Consider these two propositions: 

P: (A ∨ B) ⇒ C 

Q: (¬C ⇒ ¬A) ∨ (¬C ⇒ ¬B) 

Which of the following best describes the relationship between P and Q? Please circle 
exactly one answer. 

1. P and Q are equivalent 

2. P Q⇒ 

3. Q P⇒ 

4. All of the above 

5. None of the above 

Draw a truth table to illustrate your reasoning. You can use as many columns as you 
need. 

Solution. 

A B C P Q 
T T T T T 
T T F F F 
T F T T T 
T F F F T 
F T T T T 
F T F F T 
F F T T T 
F F F T T 

Observe from the last two columns of the table that P Q is always true, but Q P is⇒ ⇒
not always true (e.g. line 4). Thus P and Q are not equivalent but P Q.⇒ 
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Problem 2. [10 points] 

Let G0 = 1, G1 = 3, G2 = 9, and define 

Gn = Gn−1 + 3Gn−2 + 3Gn−3 (1) 

for n ≥ 3. Show by induction that Gn ≤ 3n for all n ≥ 0. 

Solution. The proof is by strong induction with hypothesis P(n) := Gn ≤ 3n . 

Proof. Base Cases


n = 0: G0 = 1 = 30.


n = 1: G1 = 3 ≤ 31.


n = 2: G2 = 9 ≤ 32.


Inductive Step: Assume n ≥ 3 and P(k) for all k such that 0 ≤ k ≤ n.


Gn = Gn−1 + 3Gn−2 + 3Gn−3 by (1) 

≤ 3n−1 + (3)3n−2 + (3)3n−3 by induction hypothesis 

= 3n−2[3 + 3 + 1] 

= (7)3n−2 

< (9)3n−2 

= 3n 

� 
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Problem 3. [20 points] 

In the game of Squares and Circles, the players (you and your computer) start with a 
shared finite collection of shapes: some circles and some squares. Players take turns 
making moves. On each move, a player chooses any two shapes from the collection. 
These two are replaced with a single one according to the following rule: 

A pair of identical shapes is replaced with a square. A pair of different shapes is replaced 
with a circle. 

At the end of the game, when only one shape remains, you are a winner if the remaining 
shape is a circle. Otherwise, your computer wins. 

(a) [5 pts] Prove that the game will end. 

Solution. Proof. We use induction on the number of turns to prove the statement. Let n 
be the number of shapes originally, and let P(k) be the proposition that if 0 ≤ k ≤ n − 1 
then after k turns, the number of remaining shapes is n − k. Thus the game ends after 
n − 1 steps. 

Base case: P(0) is true by definition; the number of reamaining shapes after 0 turns is 
n − 0 = n, the original number of shapes. 

Inductive step: Now we must show that P(k) implies P(k + 1) for all k ≥ 0. If k >= n − 1, 
P(k) implies P(k + 1) would always be true, since P(k + 1) would be trivially true. So we 
only need to prrove this for k < n − 1. So assume for your inductive hypothesis that P(k) 
is true, where 0 ≤ k < n − 1; that is, after k turns the number of remaining shapes in 
n − k. Since k < n − 1, the number of remaining shapes is n − k > 1. Hence there are at 
least 2 shapes to choose from and the game has not ended yet. In the k+1st turn either 
the computer will choose 2 shapes, or you will choose two shapes. In either case the two 
shapes chosen, will be replaced by exactly once. Hence the number of shapes remaining 
will be n − k − 2 + 1 = n − k − 1 = n − (k + 1) as desired. This proves that P(k) implies 
P(k + 1) for all k ≥ 0. 

By the principle of induction, P(k) is true for all k ≥ 0. 

Hence, by our inductve hypothes after n-1 turns, 1 shape remains, which by the problem 
definition implies the game ends. 
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(b) [15 pts] Prove that you will win if and only if the number of circles initially is odd. 

Solution. Proof. We use induction on the number of turns to prove the statement. Let a 
be the number of circles initially, and let P(k) be the proposition that if 0 ≤ k ≤ n − 1 then 
after k turns, the number of remaining ciircles is a − 2i, for some nonnegative integer i. 
Thus if a is odd initially, at turn n − 1, when the game ends, a − 2i circles - an odd number 
- remain, and since there is only one shape remaining, there must be exactly 1 circle left, 
and you win. 

Base case: P(0) is true by definition; the number of reamaining circles after 0 turns is 
a − 2 ∗ 0 = a, the original number of shapes. 

Inductive step: Now we must show that P(k) implies P(k + 1) for all k ≥ 0. If k >= n − 1, 
P(k) implies P(k + 1) would always be true, since P(k + 1) would be trivially true. So we 
only need to prrove this for k < n − 1. So assume for your inductive hypothesis that 
P(k) is true, where 0 ≤ k < n − 1; that is, after k turns the number of remaining circles is 
a − 2i1. for some nonnegative integer i1. Since k < n − 1, the number of remaining shapes 
is n − k > 1 (from part a), hence there are at least 2 shapes to choose from and the game 
has not ended yet. In the k+1st turn either the computer will choose 2 shapes, or you 
will choose two shapes. If the two shapes chosen are both squares, then they are replaced 
by a square, and the number of circles doe not change, and hence is still a − 2i1. If the 
two shapes chosen are both circles, then they are replaced by a square, and the number of 
circles gets decreased by 2, and is a − 2i − 2 = a − 2(i + 1). If one of the shapes chosen was 
a circle and the other was a square, they get replaced by a circle, and again the number of 
circles does not change and remains a − 2i. Hence in all three transitions P(k+1) holds. 

By the principle of induction, P(k) is true for all k ≥ 0. 

Hence, by induction when the game ends the parity of the number of circles is the same as 
the original parity of the number of circles. So you will win only if the number of circles 
to begin with was odd. 



5 Midterm 

Problem 4. [15 points] 

(a) [8 pts] Find a number x ∈ {0, 1, . . . , 112} such that 11x ≡ 1 (mod 113). 

Solution. We can do this using the pulverizer. Specifically, if we find a pair (s, t) such 
that 11s + 113t = 1, then we know that 11s ≡ 1 (mod 113). 

x y rem (x, y)	 = x − q y· 
113 11	 3 = 113 − 10 11· 
11 3 2	 = 11 − 3 3· 

= 11 − 3 (113 − 10 11)· · 
= −3 113 + 31 11· · 

3 2 1	 = 3 − 2 
= (113 − 10 11) − (−3 113 + 31 18)· · · 
= (4 113 − 41 11)· · 

From the above work we see that 1 = 4 113 − 41 11, and so −41 11 ≡ 1 (mod 113).· ·	 · 
Therefore -41 is an inverse of 113. However, it is not the unique inverse of 113 in the 
range {1, . . . , 113}, which is given by rem (−41, 113) = 72. So the multiplicative inverse 
of 11 modulo 113 is 72. � 

(b) [7 pts] Find a number y ∈ {0, 1, . . . , 112} such that 11112111 ≡ y (mod 113) (Hint: 
Note that 113 is a prime.) 

Solution. By Fermat’s Theorem, since 113 is prime and 113 and 11 are relatively prime, 
it must be that 

11 11111 ≡ 11113−1 ≡ 1 (mod 113),· 
so x ≡ 111 (mod 113) (where x is defined as in part a). As a result, 

11112111 ≡ 11112·1000+111 ≡ 111121000 
11111 ≡ 11000 x ≡ x ≡ 72 (mod 113),· · 

so the answer is 72.	 � 
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Problem 5. [20 points] 

Consider the simple graph G given in figure 1. 

Figure 1: Simple graph G 

A

B

C

D

E

F

(a) [4 pts] Give the diameter of G. 

Solution. Recall that the diameter is the maximum of all shortest path lengths between 
pairs of vertices. Note that the shortest path length between D and F is 3, and all other 
pairs of non-adjacent vertices share a neighbor. � 

(b) [4 pts] Give a Hamiltonian Cycle on G. 

Solution. One possible solution is (A, F, E, C, D, B, A). This cycle and its reverse should 
constitute all possible solutions. � 
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(c) [4 pts] Give a coloring on G and show that it uses the smallest possible number of 
colors. 

Solution. One possible 3-coloring is: {A, D, E} red; {B, F} green; C blue. Because there 
exists an odd-length cycle (e.g. (B, D, C)), no 2-coloring exists. Therefore the given 
coloring uses the least possible number of colors. � 

(d) [4 pts] Does G have an Eulerian cycle? Justify your answer. 

Solution. No. This follows from the fact that there exist vertices with odd degree; e.g. 
B. � 
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Now consider graph H, which is like G but with weighted edges, in figure 2: 

Figure 2: Weighted graph H 
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1

43

(e) [4 pts] Give a list of edges reflecting the order in which one of the greedy algorithms 
presented in class (i.e. in lecture, recitation, or the course text) would choose edges when 
finding an MST on H. 

Solution. Kruskal’s alg (building up an acyclic subgraph) gives two possible orders:

((C, D), (B, C), (A, B), (E, F), (C, E)) and ((C, D), (B, C), (E, F), (A, B), (C, E)). Prim’s al­

gorithm (building up a connected, acyclic subgraph) gives one possible order:

((C, D), (B, C), (A, B), (C, E), (E, F)). Figure 3 below gives the MST generated in any

case.
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Figure 3: MST on graph H
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Problem 6. [25 points] Let G be a graph with m edges, n vertices, and k components. 
Prove that G contains at least m − n + k cycles. (Hint: Prove this by induction on the 
number of edges, m) 

Solution. The proof is by induction on m with hypothesis P(n):= If G is a graph with n 
vertices, m edges and k components, then G contains at least m + k − n = c cycles 

Proof. Base Case m = 0: Let G be any graph with 0 edges and n vertices. Then since 
there are no edges, each vertex is its own connected component, hence there are k = n 
connected components. Since there are no edges there are also no cycles. Lastly we note 
that m + k − n = n + 0 − n = 0, and hence our base case. 

Inductive Step Assume that P(m) holds, that is any graph with m edges, n vertices, and 
k components has at least m − n + k cycles. We must show that P(m+1) holds. 

Consider an arbitrary graph G with m + 1 edges, n vertices, and k components. Suppose 
we remove an arbitrary edge, e, from G to obtain G�. This edge, e, was either in a cycle in 
G or not: 

Case 1: e is part of a cycle in G 

If e is in a cycle in G then removing it removes at least one cycle. Furthermore, removing 
e does not disconnect the graph so the number of components remains the same. So G� 

has m edges, n vertices, and k components, which by the inductive hypothesis tells us it 
has at least m + k − n cycles. But G has at least one more cycle than G� (since e is part of a 
cycle). So G has at least m + k − n + 1, or (m + 1) + k − n cycles, as desired. 

Case 2: e is not part of a cycle in G If e is not part of a cycle removing it disconnects 
the graph of G, so the number of components in G� is k + 1. So, G� contains m edges, n 
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vertices, and k + 1 components, so by the inductive hypothesis it contains at least m + 
(k + 1) − n cycles. Now since e was not part of a cycle, G and G� have the same number 
of cycles. So G also has at leastm + (k + 1) − n cycles. Rearranging we get that G has at 
least (m + 1) + k − n cycles as desired. 
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Problem 7. [10 points] For the following sum, find an upper and a lower bound that

differ by at most 1.


∞

∑ 
i=1 

1 √
i3 

Solution. To find the upper bound, we use the integral method, where f (i) = √1
i3

: 

∞

∑ 
i=1 

1 � ∞ 1 √
i3 

≤ f (1) + 
1 

√
i3 

dx 

1 �� 
= 1 − 2√

i 
� ∞ 

1 

= 1 − 2 (0 − 1) = 3 

To find the lower bound, we use also use the intergral method: 

1 1 � ∞ 1∞

∑ 
i=1 

lim√ ≥
3 ∞i →

dx
√
i3 
+ 

1 
√

i3x

= 0 + 2 = 2 

The two bounds differ by exactly 1. We conclude that 

∞

∑
1


2 ≤
 √
i3 

≤ 3. 
i=1 
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Problem 8. [10 points] State whether each of the following claims is True or False and 
prove your answer. 

(a)	 [2 pts] x ln x is O (x) 

Solution. False. limx ∞ x ln x/x = limx ∞ ln x = ∞ > 0 � →	 →

(b) [2 pts] x/100 is o (x) 

Solution. False. In this case we have 
x/100 

= 
1 

1/100 > 0 as x ∞ � 
x 100 

→	 → 
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(c) [2 pts] xn+1 is Ω (xn) 

xn+1

Solution. True. Taking the quotient we arrive to = x ∞ > 0 �


xn → 

(d)	 [4 pts] n! is Θ (nn). 

nn
√

2πn nn
√

2πn
Solution. False. Stirling’s formula asserts n! ∼ so limn ∞ n!/nn = limn ∞ = 

√
2πn 

en → → nnen


limn ∞ = 0. Hence n! is not Θ (nn). �
→ en 
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