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Tom Leighton and Marten van Dijk 

Final Exam 

Problem 1. [25 points] The Final Breakdown 

Suppose the 6.042 final consists of: 

•	 36 true/false questions worth 1 point each. 

•	 1 induction problem worth 15 points. 

•	 1 giant problem that combines everything from the semester, worth 49 points. 

Grading goes as follows: 

•	 The TAs choose to grade the easy true/false questions. For each individual point, 
they flip a fair coin. If it comes up heads, the student gets the point. 

•	 Marten and Brooke split the task of grading the induction problem. 

–	 With 1/3 probability, Marten grades the problem. His grading policy is as 
follows: Either he gets exasperated by the improper use of math symbols and 
gives 0 points (which happens with 2/5 probability), or he finds the answer 
satisfactory and gives 15 points (which happens with 3/5 probability). 

–	 With 2/3 probability, Brooke grades the problem. Her grading policy is as 
follows: She selects a random integer point value from the range from 0 to 15, 
inclusive, with uniform probability. 

•	 Finally, Tom grades the giant problem. He rolls two fair seven-sided dice (which 
have values from 1 to 7, inclusive), takes their product, and subtracts it from 49 to 
determine the score. (Example: Tom rolls a 3 and a 4. The score is then 49 − 3 4 = · 
37.) 

Assume all random choices during the grading process are mutually independent. 

The problem parts start on the next page. Show your work to receive partial credit. 

(a) [7 pts] What is the expected score on the exam? 
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Solution. 

36/2 + (1/3)15(3/5) + (2/3)15/2 + (49 − (4 ∗ 4)) = 18 + 3 + 5 + 33 = 59 

The expected score on the exam is the sum of the expected scores on the individual 
problems. 

Ex (test score) = Ex (mc score) + Ex (ind score) + Ex (giant score) 

•	 The expected multiple choice score is just the sum of the expectations on 36 coin 
tosses. Since the coin is fair, the expected number of heads on each flip is 1/2. There­
fore: 

Ex (mc score) = 36 1/2 = 18· 

•	 The expected induction score is a weighted sum of the expectations on problems 
graded by Marten and Brooke. Let M be the event that Marten graded the problem, 
and B be the event that Brooke graded the problem. Therefore: 

Ex (ind score | M) = 0
15 

· 2/5 + 15 · 3/5 = 9 

Ex (ind score B) = ∑ (i 1/16) = 15/2 ·| 
i=0 

Ex (ind score) = Ex (ind score | M) Pr {M} + Ex (ind score | B) Pr {B} 
= 9 1/3 + 15/2 2/3 = 8· · 

•	 The expected giant problem score is the expectation on 49 minus the product of rolls 
of two fair seven-sided dice. We can pull out the constant 49, and (since the dice 
are independent) the expectation on the product of the rolls becomes the product 
of the expectations on the rolls, which is 4 in this case (average of numbers 1 to 7). 
Therefore, if R is the random variable representing the roll of a single die: 

Ex (giant score) = Ex 49 − R2 = 49 − Ex (R)2 = 49 − (4)2 = 49 − 16 = 33 

Therefore, the overall expectation is: 

Ex (test score) = 18 + 8 + 33 = 59 

(b) [5 pts] What is the variance on the 36 true/false questions? 

Solution. Since the coin flips are independent, we can sum the variances of each flip. 

Var [mc score] = 36 1/2 1/2 = 9· · 
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(c) [5 pts] What is the variance on the induction score, given that Marten graded the 
problem? 

Solution. Using the equation Var [X] = Ex 
� 
X2� 

− Ex (X)2: 

Var [ind score] = (152 3/5) − (9)2 = 135 − 81 = 54· 

(d) [3 pts] Argue why the Markov bound can be used to determine an upper bound on 
the probability that the score on the exam is ≥ 80. You do not need to compute the actual 
bound. 

Solution. The Markov bound can be used if there is a lower bound on the possible 
values of the random variable. In this case, all test scores are ≥ 0. � 

(e) [5 pts] Use the Chebyshev bound to determine an upper bound on the probability 
that the score on the true/false questions is ≥ 24. 

Solution. If C be the random variable representing the multiple choice score: 

Pr {C ≥ 24} ≤ Pr {| C − 18 |≥ 6} 
= Pr {| C − Ex (C) |≥ 6}

Var [C]≤ 
62 

9 1 
= = 

36 4 

Problem 2. [25 points] Woodchucks Chucking Wood 

All woodchucks can chuck wood, but only some can do it well. 

•	 1/3 of all woodchucks like to chuck wood. 

•	 2/3 of all woodchucks can chuck wood well. 

•	 1/2 of those that like chucking wood can do it well. 

•	 The expected amount of wood chucked by a woodchuck (randomly chosen with 
uniform probability) is 7 kg/day. 

•	 The expected amount of wood chucked by a woodchuck that likes chucking wood 
but can’t do it well is 1 kg/day. 

•	 A woodchuck that does not like chucking wood does not chuck any wood at all, 
regardless of its wood-chucking skillz or lack thereof. 
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(a) [10 pts] What is the probability that a woodchuck (randomly chosen with uniform 
probability) likes chucking wood, given that it can do it well? 

Solution. Let L be the event that a woodchuck likes chucking wood and C be the event 
that a woodchuck can chuck wood well. We are given: 

Pr(L) = 1/3 
Pr(C) = 2/3 

Pr(C|L) = 1/2 

We wish to find Pr(L|C). Using Bayes’ rule, we have


Pr(L C) = 
Pr(C|L)Pr(L)
|

Pr(C)

(1/2)(1/3)


= 
(2/3) 

= 1/4 

(b) [15 pts] On average, how much wood would a woodchuck chuck if the woodchuck 
could chuck wood well? 

Solution. Let W be a random variable representing the amount of wood the woodchuck 
chucks. We are given (in units of kg/day): 

E(W) = 7 
E(W|(L ∩ Ū)) = 1 

Using the law of total expectation, we can partition the sample space into three events: 
(1) the woodchuck can chuck wood well; (2) the woodchuck can’t chuck wood well 
but likes chucking wood; (3) the woodchuck can’t chuck wood well and doesn’t like 
chucking wood. 

E(W) = E(W|C)Pr(C) + E(W|(C̄ ∩ L))Pr(C̄ ∩ L) + E(W|(C̄ ∩ L̄))Pr(C̄ ∩ L̄) 
7 = E(W|C)(2/3) + 1 · Pr(C̄ ∩ L) + E(W|(C̄ ∩ L̄))Pr(C̄ ∩ L̄) 

Since a woodchuck that doesn’t like chucking wood does not chuck any wood, whether 
or not it can do so, E(W|C̄ ∩ L̄) = 0, so the last product in the sum vanishes: 

7 = E(W|C)(2/3) + Pr(C̄ ∩ L) 

Finally, from the definition of conditional expection, we have 

Pr(C̄ ∩ L) = P(C̄|L)P(L) 
= (1 − P(C|L))P(L) 
= (1 − 1/2)(1/3) 
= 1/6 
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We wish to find E(W|C), the expected amount of wood chucked by a woodchuck that 
can chuck wood well: 

7 = E(W|C)(2/3) + 1/6 
41/6 = E(W|C)(2/3) 
41/4 = E(W|C) 

So E(W|C) = 41/4 = 10.25. 

Problem 3. [25 points] Cardsharing�Revolution 

Three 6.042 students—Kirari, Noelle, and Cobeni—are playing a game of Tan Tan Taan!. 
During each round of Tan Tan Taan!, each player is dealt 4 cards of their own, and one 
additional card is shared among all players, so that each player has 5 cards that they can 
use (the 4 cards of their own along with the single shared card). Cards are uniformly 
distributed from a 52-card deck. If you get four of a kind (for example, four aces or four 
2’s), you can continue playing in the next round. If you don’t get four of a kind, you must 
quit and return to doing your 6.042 homework. Cards from round to round are mutually 
independent. This game is so fun that even if two of the three players must quit and 
return to their 6.042 homework, the third player will continue playing alone as long as 
they are able to. 

(a) [5 pts] What is the probability that Kirari has four aces in the first round? 

Solution. The total number of hands that Kirari can possibly get is (52 
5 ). Now we count 

how many ways they can make quad aces. There is only one way to get all four aces, and 
52 − 4 = 48 choices for the last card in the hand. So there are 48 hands that correspond 
to quad aces, and the probability of making quad aces is 

48 

(52 
5 ) 

(b) [5 pts] What is the probability that Kirari doesn’t get four of a kind in the first round 
(and must quit playing)? 

Solution. The different four-of-a-card hands do not overlap at all (no one hand is both 
four-of-a-kind for two different numbers), so the probability of getting any four-of-a­
kind hand is 

King 

Pr[ any four-card hand ] = ∑ Pr[ four-of-a-kind of card i] 
i=Ace 
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By symmetry, all these probabilities are the same, so the probability of getting four-of-a­
kind is 13 ∗ 48 . The event of not getting a four-of-a-kind is the complement of this set, 

(52 
5 ) 

and so has probability

624


1 − 
(52


5 ) 

(c) [5 pts] What is the expected number of rounds that Kirari will play? 

Solution. This is a mean-time-to-failure problem. Imagine flipping a coin that has 
“heads” with probability 

624 
52p = 1 − 
( 5 ) 

. We flip the coin until we get heads. From results in our class (or through doing the 
summation ourselves), we know that the result is 1/p. � 

(d) [10 pts] What is the probability that all three can play a second round? 

Solution. There are two problems in play here. First, we have to figure out the total 
number of hands that can be assigned to everyone: second, we have to figure out the 
number of ways that everyone can get four-of-a-kind. 

First, consider the problem of finding the total number of hands that can be given out. 
Note that we can represent each dealing of hands as an ordered list of 13 cards chosen 
from the 52 cards in the deck, where the first 4 cards belong to Kirari, the second 4 
belong to Noelle, the third four belong to Cobeni, and the final card is the communal 
card. There are 52!/(52 − 13)! ways to do this. However, we must remember that the 
ordering of cards in Kirari, Noelle, and Cobeni’s hands do not matter - so we must 
“remove” the ordering in each of those four-card hands. This is done by dividing out by 
4! three times. So the total number of ways we can deal cards is: 

52!/39!4!4!4! 

Now, we must count the number of ways to have all three people make four-of-a-kind 
hands. There are two cases: when the communal card is part of a four-of-a-kind, and 
when it is not. 

•	 First consider when it is not part of a four-of-a-kind. Choose first the four-of-a-kinds 
that could happen: there are 13 ∗ 12 ∗ 11 ways to assign numbers to the three people. 
After these numbers have been assigned, there are 52 − 12 = 40 choices for the 
communal card. So there are 13 ∗ 12 ∗ 11 ∗ 40 ways to make a four-of-a-kind this way. 

•	 Now say the communal card is part of a four-of-a-kind. Say it was part of Kirari’s 
four-of-a-kind (by symmetry, the counting is the same if it were part of the other 
two’s four-of-a-kinds). Once again, there are 13 choices for Kirari, 12 choices for 
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Noelle, and 11 choices for Cobeni. And once again, there are 40 choices for the extra 
card in Kirari’s hand. So in total, there are 13 ∗ 12 ∗ 11 ∗ 40 ∗ 3 ways for four-of-a-kind 
to happen in this case. 

In total, there are 4(13 ∗ 12 ∗ 11 ∗ 40) ways to make four-of-a-kind hands in this format. 
So the probability of everyone getting a four-of-a-kind is 

4 ∗ 13 ∗ 12 ∗ 11 ∗ 40 ∗ (39!4!4!4!) 
52! 

Problem 4. [15 points] Packet Racket! 

Consider the complete ternary-tree network with 9 inputs and 9 outputs shown below 
where packets are routed randomly. The route each packet takes is the shortest path 
between input and output. Let I0, I1, and I2 be indicator random variables for the events 
that a packet originating at in0, in1, and in2, respectively, crosses the dashed edge in the 
figure. Let T = I0 + I1 + I2 be a random variable for the number of packets passing 
through the dashed edge. 

in0 out0 in1 out1 in2 out2 in3 out3 in4 out4 in5 out5 in6 out6 in7 out7 in8 out8

(a) [10 pts] Suppose that each input sends a single packet to an output selected uniformly 
at random; the packet destinations are mutually independent. (Note that outputs may 
receive packets from multiple inputs including their corresponding input.) 

What are the expectation and variance of T? 

Solution. A packet will pass through the dashed edge if it originates in inputs 0–2 and 
is destined for outputs 3–8. For j ∈ {0, 1, 2} Let Ij be an indicator random variable for 
the event that a packet leaving input j passes through the dashed edge. The probability 
of this event is 2

3 . It follows that: 
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T = I1 + I2 + I3 

Ex[T] = Ex[I1 + I2 + I3] 

= Ex[I1] + Ex[I2] + Ex[I3] 
2 

= 3 · 
3 

= 2 

Similarity, but the linearity of variance for independent random variables: 

T = I1 + I2 + I3 

Var[T] = Var[I1 + I2 + I3] 

= Var[I1] + Var[I2] + Var[I3] 

= 3 · 2 
3 
· 1 − 

2 
3 

2 
= 

3 

� 

(b) [5 pts] Now consider the situation where a permutation of inputs to outputs is chosen 
uniformly at random; each input sends a packet to a distinct output. What is the expected 
value of T? Briefly justify your answer. 

Solution. Once again, T = I1 + I2 + I3. By linearity of expectation, E [T] = E [I1] + 
E [I2] + E [I3]. We know that E [Ii] = 2/3 still, because each input is equally likely routed 
to any of the outputs (even when we only restrict ourselves to permutations). Thus, 
E [T] = 3 ∗ 2/3 = 2. � 
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Problem 5. [15 points] Connected or Not? That Is the Question 

Suppose we have a simple, undirected graph G with 2n vertices and 2n edges, where 
n ≥ 3. The graph consists of two disjoint cycles with n edges each. For example, if n = 6, 
the graph would look like this: 

(a) [5 pts] A pair of vertices u and v from G is selected uniformly at random from the 
pairs of distinct vertices with no edge between them. A new graph G� is constructed to be 
the same as G, except that there is an edge between u and v. What is the probability that 
G� is connected? 

Solution. G� is connected if and only if u and v come from different cycles. There are n2 

pairs of vertices consisting of vertices in different cycles. In all, there are (2
2 
n) − 2n pairs 

of vertices with no edge between them, since there are (2
2 
n) pairs of vertices and 2n of 

these pairs have an edge between them. The desired probability p can be computed as 
follows: 

n2 
p = 

(2n 
2 ) − 2n 

n2 
= 

2n(2n−1) 
2 

n2 

− 2n 

= 
2n2 − n − 2n 

n 
= 

2n − 3 
� 

(b) [10 pts] k pairs of vertices from G are selected uniformly at random from the pairs 
of distinct vertices with no edge between them. Repetition is allowed; it is possible, for 
example, that the same pair appears multiple times in the set of k pairs. A new graph 
G�� is constructed to be the same as G, except that there are k new edges: the edges that 
correspond to the k selected pairs. What is the probability that G�� is not connected? 

(Hint: For k = 1, the sum of your answers to part (a) and part (b) should equal 1.) 

Solution. Note that the probability of not connecting the graph in one sampling of two 
nonadjacent vertices is 

n 
p = 1 − 

2n − 3 
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Because we are able to choose the same pair many times, we are simply taking inde­
pendent samples of two nonadjacent vertices. Furthermore, in k samples, the graph is 
not connected if and only if none of the pairs chosen have connected the graph. The 
probability of this happening is 

pk = (1 − 
2n

n 
− 3

)k 

Problem 6. [15 points] 6.042: The Ultimate Showdown 

There are 100 homework problems in 6.042 throughout the term. Let Ti, 1 ≤ i ≤ 100, be 
the random variable indicating the fraction of a day that is needed by a student to solve 
the ith problem of 6.042. 

The distribution for each Ti is different and unknown. We only know that the Ti are 
mutually independent and that for all i, 0 ≤ Ti ≤ 1 and Ex[Ti] = 0.3. 

Let T be the sum of all Ti’s; T represents the total number of days needed by a student 
to complete all homework problems for 6.042. Prove that the probability that T is greater 
than 30e is exceedingly small by deriving the best bound you can on this probability. 
(Hint: We do not consider 1/e to be exceedingly small.) 

Solution. We know that T = ∑i Ti. Thus, we know that Ex[T] = Ex[∑i Ti] = ∑i Ex[Ti] = 
100(.3) = 30 

Now, from the Chernoff bound (which we can use because the Ti are mutually indepen­
dent), we have that 

Pr{T ≥ 30e} ≤ e−(e−e+1) 30 = e−30·

Which is quite a small bound. 

Problem 7. [25 points] Gotta Count ’Em All! 

An unusual species inhabits the forest surrounding Functional City. Each member of the 
species can take one of three possible forms, called Schemander, Haskeleon, and Camlizard. 

In January of every year, each individual undergoes “evolution”—a process by which the 
individual splits into two individuals, whose forms depend on the form of the original: 

• A Schemander splits into a Schemander and a Haskeleon. 

• A Haskeleon splits into a Schemander and a Camlizard. 

• A Camlizard splits into a Schemander and a Haskeleon. 
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We are investigating the distribution of forms within a large population of this species 
over time. It is known that in June of year 0, the population consisted of a single Scheman­
der. Assume that no individual ever dies and that all individuals successfully undergo 
evolution exactly once every January. 

(a) [3 pts] Let Sn, Hn, and Cn be the number of Schemanders, Haskeleons, and Cam-
lizards, respectively, in June of year n. Express Sn, Hn, and Cn in terms of Sn−1, Hn−1, and 
Cn−1, for n > 0. 

Solution. For each form, we look at what forms can be possible parents for it. A Sche­
mander can have any of the three forms as a parent, so the number of Schemanders 
at time n is the number of Schemanders, Haskeleons, and Camlizards at time n − 1. 
Likewise, a Haskeleon can have either a Schemander or a Camlizard as a parent, and a 
Camlizard can have only a Haskeleon as a parent. 

Therefore, we can the recurrence equations as 

Sn = Sn−1 + Hn−1 + Cn−1 

Hn = Sn−1 + Cn−1 

Cn = Hn−1 

(b) [5 pts] Let Tn = Sn + Hn + Cn be the total number of individuals in June of year n. 
Use induction to prove that Tn = 2n for all n ≥ 0. 

Solution. We expand each of the three terms using the recurrence: 

Tn = Sn + Hn + Cn 

= (Sn−1 + Hn−1 + Cn−1) + (Sn−1 + Cn−1) + (Hn−1)


= 2(Sn−1 + Hn−1 + Cn−1)


= 2(Tn−1)


We can see that the population doubles every year. Since T0 = 1 (just a single individ­
ual), Tn = 2n . � 

(c) [2 pts] Show that Hn = Tn−1 − Hn−1 for n > 0. 

Solution. We use the expression for Hn from the recurrence: 

Hn = Sn−1 + Cn−1 

= (Sn−1 + Hn−1 + Cn−1) − Hn−1 

= Tn−1 − Hn−1 
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(d) [15 pts] Give a closed-form expression for Hn. You may use, without proof, the fact 
stated in part (b) and the recurrence given in part (c). 

Solution. From parts (b) and (c), we have 

Hn = Tn−1 − Hn−1 

= 2n−1 − Hn−1 

= (1/2)2n − Hn−1 

Hn + Hn−1 = (1/2)2n 

This is a linear recurrence. We first solve for the particular solution. Since the (1/2)2n 

term is an exponential, we try f (n) = a2n. Plugging this into the recurrence gives us 

a2n + a2n−1 = (1/2)2n 

a2n + (1/2)a2n = (1/2)2n 

(3/2)a = 1/2 
a = 1/3 

Next we solve for the homogeneous solution: 

Hn + Hn−1 = 0 
r + 1 = 0 

r = −1 

So our expression for Hn is of the form 

Hn = A(−1)n + (1/3)2n 

We solve for A by using the initial condition H0 = 0, since there are no Haskeleons in 
year 0. 

0 = A(−1)0 + (1/3)20 

= A + 1/3 
A = −1/3 

The final expression for Hn is thus 

Hn = (−1/3)(−1)n + (1/3)2n 

Problem 8. [15 points] Asymptotic Awesomeness 

For each row in the following table, determine whether there exist functions f and g that 
satisfy all the properties marked Yes and do not satisfy the properties marked No. You do 
not have to provide examples. 
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Solution. (a) No. f = Θ(g) implies that f = Ω(g). 

(b) Yes. Example: f (n) = n2; g(n) = n. 

(c) No. f = o(g) implies that f = O(g). 

(d) Yes. Example: f (n) = n; g(n) = 2n. 

(e) Yes. Example: f (n) = n2; g(n) = n(−1)n+1. 

(f) Yes. Example: f (n) = n(−1)n+1+1; g(n) = n(−1)n+1. 

Problem 9. [20 points] Yet Another Graph Proof 

Prove that in a finite directed graph, if every node has at least one outgoing edge, then 
the graph has a cycle. 

(Hint: Consider the longest path.) 

Solution. Suppose that every node has at least one outgoing edge. Since the digraph is 
finite, there exists a longest path v1 → v2 → . . . vh. Node vh has an outgoing edge 
vh → v. If v �∈ {v1, v2, . . . , vh}, then v1 → v2 → . . . 

→
→ vh → v is a longer path of length 

h + 1. Therefore, v ∈ {v1, v2, . . . , vh}, that is, v = vi for some 1 ≤ i ≤ h. This means that 
the graph has a cycle vi → . . . → vh → vi. � 

Problem 10. [20 points] Revenge of the Slipped Disc Puzzle™: The Curse of 6.042 

(This problem is similar to the Slipped Disc Puzzle™ of Quiz 1, but here we rotate 5 tiles 
instead of 4.) 

f = Θ(g) f = O(g) f = o(g) f = Ω(g) f = ω(g) Do f , g exist? 

(a) Yes Yes Yes No No No 

(b) No No No Yes Yes Yes 

(c) No No Yes No No No 

(d) Yes Yes No Yes No Yes 

(e) No Yes No No No Yes 

(f) No No No No No Yes 
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The Super Awesome Extreme zomgroflolwut Spifftastic-to-the-Max Slipped Disc Puz­
zle™ consists of a track holding 9 circular tiles. In the middle is a disc that can slide 
left and right and rotate 180◦ to change the positions of exactly five tiles. As shown below, 
there are three ways to manipulate the puzzle: 

Shift Right: The center disc is moved one unit to the right (if there is space). 

Rotate Disc: The five tiles in the center disc are reversed. 

Shift Left: The center disc is moved one unit to the left (if there is space). 

1 2 3 4 5 6 7 8 9

shift rig
ht

rotate disc

shift left

1 2 7 6 5 4 3 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Prove that if the puzzle starts in an initial state with all but tiles 1 and 2 in their natural 
order, then it is impossible to reach a goal state where all the tiles are in their natural 
order. The initial and goal states are shown below: 

2 1 3 4 5 6 7 8 9

Initial State Goal State

1 2 3 4 5 6 7 8 9

Write your proof on the next page... 

Solution. Order the tiles from left to right in the puzzle. Define an inversion to be a pair 
of tiles that is out of their natural order (e.g. 4 appearing to the left of 3). 
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Lemma. Starting from the initial state there is an odd number of inversions after any number of 
transitions. 

Proof. The proof is by induction. Let P(n) be the proposition that starting from the initial 
state there is an odd number of inversions after n transitions. 

Base case: After 0 transitions, there is one inversion, so P(0) holds. 

Inductive step: Assume P(n) is true. Say we have a configuration that is reachable after 
n + 1 transitions. 

1. Case 1: The last transition was a shift left or shift right 

In this case, the left-to-right order of the discs does not change and thus the number 
of inversions remains the same as in 

2. The last transition was a rotate disc. 

In this case, six pairs of disks switch order. If there were x inversions among these 
pairs after n transitions, there will be 6 − x inversions after the reversal. If x is odd, 
6 − x is odd, so after n + 1 transitions the number of inversions is odd. 

Conclusion: Since all reachable states have an odd number of inversions and the goal 
state has an even number of inversions (specifically 0), the goal state cannot be reached. 
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