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Problem 1. [8 points] Prove that for all n ∈ N, the following identity holds 

n

i2 = 
n(n + 1)(2n + 1) 

. 
6 

i=1 

Solution. By induction on n ≥ 1, with induction hypothesis 

n� n(n + 1)(2n + 1) 
P (n) : i2 = 

6 
i=0 

for all n ∈ N 

Base case (n = 1):

1(1 + 1)(2 + 1) 6


= = 1 = 12 

6 6 

Inductive step: Assume P (n), we need to show that P (n + 1) holds. 

n+1 n

i2 = ( i2) + (n + 1)2 

i=0 i=0 

= 
n(n + 1)(2n + 1) 

+ (n + 1)2 

6 
n(n + 1)(2n + 1) + 6(n + 1)2 

= 
6 

(n + 1)(2n2 + n + 6n + 6) 
= 

6 
(n + 1)(2n2 + 7n + 6) 

= 
6


(n + 1)(n + 2)(2n + 3)

= 

6 
(n + 1)((n + 1) + 1)(2(n + 1) + 1) 

= 
6 

⇒ P (n + 1) 

as required. 

We have shown that P (n) ⇒ P (n + 1). Thus, P (n) is true for all n ∈ N. 
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Problem 2. [20 points] Coin-Flip is a 2 player game. Each player wins with probability 
exactly 0.5. There are no ties. 

n people are playing a Coin-Flip tournament. Every person plays a Coin-Flip game 
with every other person exactly once. Thus everybody plays n − 1 games. The outcomes 
of all the games are mutually independent of one another. 

We say that the tournament is a success if for every i ∈ {0, 1, . . . , n − 1}, there is exactly 
one player, which we will refer to as pi, with exactly i wins. 

(a) [10 points] Prove that if the tournament is a success, then for any integers j, k 
with 0 ≤ k < j ≤ n − 1, pj defeats pk. 

Solution. We prove it by induction on k. The inductive hypothesis P (k) is that for 
all 0 ≤ � ≤ k and all � < j < n, pj defeats p�. 

The base case is k = 0. Now p0 loses all n − 1 games. Thus, for every j > 0, pj 
defeats p0. Suppose P (k) and let us show P (k +1). Since the tournament is a sucess, 
pk+1 wins exactly k + 1 games. Because P (k) holds, pk+1 defeats the k + 1 players 
p0, p1, . . . , pk. Thus, for all k + 1 < j < n, pj defeats pk+1. So P (k + 1) holds. 

(b) [6 points] What is the probability that the tournament will be a success? 

Solution. Let π be a permutation of {0, 2, . . . , n − 1} and define the event Eπ to be 
that the tournament is a success with players pi winning exactly i games, where pi 
is the π(i)th player. Then the events Eπ and Eσ are disjoint for π =� σ. Moreover, by 
symmetry, Pr[Eπ] = Pr[Eσ] for all permutations σ, π. Let E be the event the tourna­
ment is a success. Since the events are disjoint, 

Pr[E ] = Pr[Eπ] = n! Pr[Eσ], 
π 

where σ is some fixed permutation. Now Eσ determines all the outcomes of the 
games. As there are n 

2 games, we have 

� �(n)1 2

Pr[Eσ] = . 
2 

In total, � �(n 
2)1 

Pr[E ] = n! . 
2 

(c) [4 points] Show that your answer to part (b) is o(1). Solution. We have, � �(n) � �(n) � �(n)−n log n
1 2 1 2 1 2

Pr[E ] ≤ n n = 2n log n = . 
2 2 2 
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Now, n − n log n = Ω(n2), so there is a positive constant c such that for sufficiently 
2 

large n, this probability is at most � � 2 

1 cn

,
2 

which for sufficiently large n, is clearly less than any positive constant, and thus is 
o(1). 
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Problem 3. [8 points] A person is passing time by advancing a token on the set of natural 
numbers. In the beginning, a token is placed on 0. 

The person keeps playing moves forever. Each move proceeds as follows: 

1. First the person tosses a fair coin (with heads/tails equally likely). 

2. Suppose the token is currently placed on n. If heads came up, then the person moves 
the token to n + 3, otherwise he moves the token to n + 4. 

For each n ∈ N, let En be the event ”There was a move on which the token landed on 
n”. Let pn = Pr[En]. 

Find a recurrence relation for pn. You do not need to solve the recurrence, but you should 
specify the boundary conditions that would be necessary to find a solution to the recurrence. 

Solution. For all n ≥ 4, 
1 1 

pn = pn−3 + pn−4,
2 2

with boundary conditions p0 = 1, p1 = 0, p2 = 0, p3 = 1/2. 
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Problem 4. [10 points] Exactly 1/5th of the people in a town have Beaver Fever©. 

There are two tests for Beaver Fever, TEST1 and TEST2. When a person goes to a doctor 
to test for Beaver Fever, with probability 2/3 the doctor conducts TEST1 on him and with 
probability 1/3 the doctor conducts TEST2 on him. 

When TEST1 is done on a person, the outcome is as follows: 

• If the person has the disease, the result is positive with probability 3/4. 

• If the person does not have the disease, the result is positive with probability 1/4. 

When TEST2 is done on a person, the outcome is as follows: 

• If the person has the disease, the result is positive with probability 1. 

• If the person does not have the disease, the result is positive with probability 1/2. 

A person is picked uniformly at random from the town and is sent to a doctor to test 
for Beaver Fever. The result comes out positive. What is the probability that the person 
has the disease? 

Solution. Let B be the event that the person has BLAH. Let T 1 be the event that the 
person is tested with test1. Let T 2 be the event that the person is tested with test2. Let P 
be the event that the test comes out positive. 

A tree diagram is worked out below with the given information: 
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The probability that a person has BLAH, given that the test comes out positive is: 

Pr {B | S} = Pr {B | T 1 ∩ P } · Pr (T 1) + Pr {B | T 2 ∩ P } · Pr (T 2) 

= 
Pr (B ∩ T 1 ∩ P ) 

Pr (T 1) + 
Pr (B ∩ T 2 ∩ P ) 

Pr (T 2)
Pr (T 1 ∩ P ) 

· 
Pr (T 2 ∩ P ) 

· 

= 
Pr (D ∩ T 1 ∩� 

P 
¯
) � Pr (T 1)+ 

Pr (D ∩ T 1 ∩ P ) + Pr D ∩ T 1 ∩ P 
· 

Pr (D ∩ T 2 ∩ P ) 

Pr (D ∩ T 2 ∩ P ) + Pr 
� 
D̄ ∩ T 2 ∩ P 

� · Pr (T 2) 

1 12 110 15 = +1 + 2 · 3 1 + 2 · 3
10 15 15 15 

5 
= 

13 



� � 

� � 

� � 

� � 

� � 

� � 

9 Final 

Problem 5. [10 points] Two identical complete decks of cards, each with 52 cards, have 
been mixed together. A hand of 5 cards is picked uniformly at random from amongst all 
subsets of exactly 5 cards. 

(a) [5 points] What is the probability that the hand has no identical cards (i.e., cards 
with the same suit and value. For example, the hand �Q♥, 5♠, 6♠, 8♣, Q♥� has iden­
tical cards.)? We can calculate this probability by computing 

hands with no identical cards 
total possible hands 

There are 104 cards. There are 5 cards in a hand. Order does not matter. The total 
number of possible hands is:
104

5


There are 52 possible card faces, and we can choose 5 of them if no identical cards 
are allowed. Additionally, each card can be from either deck 1 or deck 2. Therefore 
the number of hands with no identical cards, chosen from 2 decks is: 

52 
25 

5 
· 

Therefore the probability of drawing a hand with no identical cards is: 

52 25 �5 ·�
104 
5 

(b) [5 points] What is the probability that the hand has exactly one pair of identical 
cards? This can be solved by a similar approach. A hand of this type can be distin­

guished by the face (suit and value) of the repeated card, and by the faces of the 3 
non-repeated cards. There are 52 possible values for the face of the repeated card. 
There are 51 possible faces for the non-repeated cards, since none of these can be 

3 
repeated. Each of these could come from either the 1st deck or the 2nd deck. There 
are 104 possible hands, as before. So the probability of getting a hand with exactly 

5 
one pair of identical cards is: 

52 51 23 ·� 3 � · 
104 
5 
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Problem 6. [28 points] Scores for a final exam are given by picking an integer uniformly 
at random from the set {50, 51, . . . , 97, 98}. The scores of all 128 students in the class are 
assigned in this manner. For parts (a), (b), (c) and (d) you may NOT assume that these 
scores are assigned independently. For parts (e), (f), (g) and (h) you MAY assume that 
these scores are assigned independently. 

Let S1, . . . , S128 be their scores. Let S = 1 ( 
�128 Si) be the average score of the class. 

128 i=1 

(a) [3 points] For i ∈ {1, . . . , 128}, what is E[Si] ? 

(b) [2 points] Show that E[S] = 74. Make no independence assumptions. 

(c) [4 points] Prove that 
37 

Pr[S ≥ 88] ≤ . 
44 

Make no independence assumptions. 
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(d) [5 points] Improve your previous bound by using the fact that the minimum 
possible score is 50. Prove that 

12

Pr[S ≥ 88] ≤ .


19 

Make no independence assumptions. 

(e) [4 points] For the remaining problems, assume that all the scores are assigned 
mutually independently. Use Problem 1 of this final to find V ar[Si]. 
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(f) [3 points] What is V ar[S]? 

(g) [2 points] What is the standard deviation of S? 

(h) [5 points] Prove, using the Chebyshev Inequality, that 

1

Pr[S ≤ 69] ≤ . 

16
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Solution. 

(a) We simply take the average of the numbers from 50 to 98. Thus, E[Si] = 50+98 = 
2 

74. 

(b) By linearity of expectation, 

128
1 � 1

E[S] = E[ ( Si)] = (128 ∗ E[S1]) = E[S1] = 74 
128 128

i=1 

(c) By Markov’s inequality, 

E[S] 74 37 
Pr[S ≥ 88] ≤ = = . 

88 88 44 

(d)	 We define a random variable T = S − 50, and thus E[T ] = E[S] − 50 = 24. Now

we just apply Markov’s inequality:


E[T ] 24 12 
Pr[S ≥ 88] = Pr[T ≥ 38] ≤ = = . 

38 38 19 

(e) We define Ti = Si − 50. 

48

V ar[Si] = V ar[Ti] = E[Ti 
2]−E2[Ti] = ( 

1 � 
i2)−E2[Ti] = 

1 (48)(49)(97)−(24)2 = 776−576 = 200. 
49	 49 6 

i=0 

(f) 

128
1 � 1	 V ar[S1] 200 25 

V ar[S] = V ar[ ( Si)] = ( )2(128 ∗ V ar[S1]) = = = . 
128 128	 128 128 16 

i=1 

(g) The standard deviation of S is simply the square root of the variance of S: 

25 5 
σS = = . 

16 4 

(h) Using Chebyshev’s inequality, 

1 1 
Pr[S ≤ 69] ≤ Pr[|S − 74| ≤ 5] = Pr[|S − E[S]| ≤ 4 ∗ σS ] ≤ 

42 
= 

16 
. 
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Problem 7. [16 points] 1000 files F1, F2, . . . , F1000 have just reached a disk manager for 
writing onto disk. Each file’s size is between 0MB and 1MB. The sum of all files’ sizes is 
400MB. 

The disk manager has 4 disks under its control. For each file Fi, the disk manager 
chooses a disk uniformly at random from amongst the 4 disks, and Fi is written to that 
disk. The choices of disk for the different files are mutually independent. 

(a) [2 points] What is the expected number of files that will be written to the first 
disk? 

We can use indicator variables. For each file, Pi = 1 if Fi is written to the first disk. 
The chance of an individual file being written to the first disk is 1/4. By linearity of 
expectation, the expected number of files written to the first disk is the sum of the 
expected values of Pi’s. The expected value of each indicator variable is 1/4, and �( 1000)1/4 = 250, so the expected number of files to be written to the first disk i=1 
is 250. 

(b) [2 points] What is the expected number of bytes written on the first disk? 

We can say that each file Fi has bit size Si. Each file has a 1/4 chance of being written 
do the first disk. Therefore, by linearity of expectation, the expected number of bytes 
written to the first disk is the sum of the expected number of bytes per file written 
to the first disk, which is: 

1000 1000

1/4 Si = 1/4 Si = 1/4 400 = 100 · · 
i=1 i=1 
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(c) [8 points] Find the best upper bound you can on the probability that 200MB or 
more are written on the first disk? 

For this we can use the first Chernoff bound, which is: 

Pr (X ≥ c Ex (X)) ≤ e−(c ln c − c + 1) Ex (X) 

The Chernoff bound only works if X is the sum of random variables that each take 
on a value between 0 and 1. The file size of each file in the first disk is between 0 and 
1Mb . So we can define X to be the total number of bytes in disk 1. The expected 
value of X is 100, so we take c to be 2. We get: 

Pr (X ≥ 2 100) ≤ e−(2 ln 2 − 2 + 1)100 · 

(d) [4 points] Find the best upper bound you can on the probability that there is 
some disk with 200MB or more written on it? 

For this we can use the Union Bound along with our result from above. The proba­
bility of this event happening in one or more disks is upper bounded by the sum of 
the probabilities of the event happening in each disk. This gives us an upper bound 
of 

4 e−(2 ln 2 − 1)100 · 
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