

separate habitats to house different species of animals, some incompatible with others? # different frequencies for radio stations that interfere with each other? # different colors to color a map?

pyright © Albest R. Meyer, 2005. October 5, 2005 Lee 5W-12

Four Color Theorem

Any planar map is 4-colorable. False proof published 1850's (was correct for 5 colors). Proof with computer calculations: 1970's.

Much improved: 1990's

Bounded Degree

If $deg(v) \le k$ for all vertices v of G, then $\chi(G) \le k+1$

A simple recursive coloring procedure achieves this.

Arbitrary Graphs

2-colorable? --easy to check 3-colorable? --hard to check (even if planar) $\chi(G)$? --harder still

Team Problems

Problems 2 & 3