


```
Constructing the DAG

• 18.01 \rightarrow 6.042 • 18.03, 8.02 \rightarrow 6.002 • 6.001, 6.002 \rightarrow 6.004 • 6.001, 6.002 \rightarrow 6.004 • 6.001, 6.002 \rightarrow 6.003 • 6.004 \rightarrow 6.033 • 6.001 \rightarrow 6.034 • 6.042 \rightarrow 6.046 • 6.046 \rightarrow 6.840

Remove minimal elements
```


Parallel Task Scheduling

- 6 terms are **necessary** to complete the curriculum
- and sufficient (if you can take unlimited courses per term...)

mainly 0 at an a Maria Palacetta 2005

14221

Antichains

Set of courses that can be taken in any order:

Any two courses in set are incomparable

pyright © Albert R. Meyer and Ronitt Rubinfeld 2005.

L4-2.34

Parallel Task Scheduling

Theorem: If the longest chain has size *t*, then the elements can be *partitioned* into

t successive antichains,

with no element in any block *preceding* anything in a preceding block

September 28, 2005

L4-2

Why sufficient?

Take

 $B_i = \{a \mid \text{largest chain ending in } a \text{ is of size } i\}$

If there is a y in B_i such that $x \rightarrow y$ and x not in $B_1 \dots B_{i-1}$ then there is a chain of size >i ending in y

right © Albert R. Meyer and Ronitt Rubinfeld 2005.

.4-2.36

Minimum "Parallel" Time

parallel time = max chain size.

required # processors

 \leq max antichain size.

Copyright © Albert R. Meyer and Ronitt Rubinfeld 200:

. 20 2005

A 3-course term is necessary

- 15 subjects
- \max chain size = 6
- size of *some* block must be

$$\geq \lceil 15/6 \rceil = 3$$
.

∴ to finish in 6 terms, must take ≥3 classes some term

eid 2005. September 28, 2005

L4-2.44

Dilworth's Lemma

A partial order on n items has

- a chain of size $\geq t$, or
- or an antichain of size \geq for all $1 \le t \le n$.

Height/Birthday Partial Order

Two students are related to each other iff one is shorter and younger than the other

$$(s_1, a_1) \preceq (s_2, a_2)$$
 iff

$$(s_1 \le s_2)$$
 and $(a_1 \le a_2)$

Height/Birthday Partial Order

Chain of students:

get older as they get taller.

AntiChain of students:

get younger as they get taller.

Team Problem

Problem 4