

Relation Abstraction

(Binary) Relation: domain = set Acodomain = set Bgraph = subset of $A \times B$ graph(R) = { $(a_1,b_1), (a_1,b_3), (a_3,b_3)$ } $\mathbf{A} \times \mathbf{B} = \{ (a_1, b_1), (a_1, b_2), (a_1, b_3) \}$ $(a_2,b_1), (a_2,b_2), (a_2,b_3)$ $(a_3,b_1), (a_3,b_2), (a_3,b_3)$

Relation Abstraction

Relation on A: domain = set Acodomain = set A

graph =
$$\{(a_1,a_1), (a_1,a_3), (a_3,a_3)\}$$

Types of Binary Relations on A

- •Equivalence
- Partial Orders

Equivalence Relations

• Equivalence (mod 4):

 $1 \equiv 5$ (same remainder/4)

• Propositional equivalence:

$$P \wedge Q \equiv P \vee Q$$
 (same truth table)

Equivalence Relations

• Equivalent *code* (compilers):

$$x:=1;x:=x+1 \equiv x:=3$$

(same effect)

• Rubik's cube equivalence

Def. of Equivalence on Set A

There is a function, f, on A such that

$$a \mathbf{R} b \text{ iff } f(a) = f(b)$$

Equivalence Relations

• Equivalence (mod 4):

 $1 \equiv 5$ (same remainder/4)

$$f(x) = x \mod 4$$

Convright © Albert R. Meyer and Ronitt Rubinfeld 2005

ntember 9, 2005

Hash Collision Equivalence

 $h(\langle name1 \rangle) = h(\langle name2 \rangle)$

Collides with is an equivalence relation (on addresses in large space)

Copyright © Albert R. Meyer and Ronitt Rubinfeld 20

mber 9, 2005

Athena Equivalence

Athena assigns user directories based on the

first two letters of a username: rab & rae j in r/a/

Copyright © Albert R. Meyer and Ronitt Rubinfeld 200:

L4-1.1

Athena Equivalence

• Names with *same* first 2 letters:

 $Ben \equiv Betty$

• f(name) = first two letters

opyright © Albert R. Meyer and Ronitt Rubinfeld 2005.

ember 9, 2005

L4-1.

Partitions Partitions

Theorem: An equivalence relation *partitions* its domain into collections of equivalent elements called

equivalence classes.

Athena Partition

- All names starting with "aa"
- All names starting with "ab"
- All names starting with "ac"

• All names starting with "zz"

 26×26 equivalence classes

Some properties of relations:

Relation *R* on set *A* is

Reflexive:

if aRa for all $a \in A$.

Symmetric:

if $aRb \rightarrow bRa$ for all $a,b \in A$.

Transitive:

if $[aRb \land bRc] \rightarrow aRc$ for all $a,b,c \in A$.

Equivalence Relation Properties

Equivalence Relation R on set A is

Reflexive: aRa

Symmetric: $aRb \rightarrow bRa$

Transitive: $[aRb \land bRc] \rightarrow aRc$

Equivalence Relation Properties Theorem:

R is an equivalence relation iff it is

> Reflexive, Symmetric, & Transitive

Team Problems

Problems 1 & 2

Ordering Relations

- ≤ on the Integers
- < on the Reals
- **⊆** on Sets (subset)
- **c** on Sets (*proper* subset)

Partial Orders

The proper subset relation,

on sets is the canonical example.

Partial Order: divides

a divides b(a | b) iff ka = b for some $k \in \mathbb{N}$

Def. of Partial Order on Set A

There is a *set-valued* function, g, on A such that a R b iff $g(a) \subset g(b)$ for $a \neq b$

Albert R. Meyer and Ronitt Rubinfeld 2005. September 9, 2005

Subset Relation $15 \rightarrow \{1,3,5,15\}$ $10 \rightarrow \{1,2,3,5,10,15,30\}$ $3 \rightarrow \{1,3\}$ $1 \rightarrow \{1,5\}$ $1 \rightarrow \{1\}$ Copyright 0. Abort 8. More and Resided 2005. September 9.2005. L4-1.39

Axioms for Partial Order

Theorem: R is a partial order iff

Transitive & Antisymmetric

(Compare to Equivalence:

Reflexive, Transitive, Symmetric.)

Total Order on A

Partial Order, R, such that

aRb or bRa

for all $a \neq b \in A$

Total Orders

a < b or b < a(for numbers $a \neq b$)

Total Orders

 $a \le b \text{ or } b \le a$ (for all a, b)

Team Problems

Problems 3 & 4