
Mathematics for Computer Science	 Unstacking game 
MIT 6.042J/18.062J 

• Start:  n boxes in one stack n=a+b a bInduction II • Move: pick any stack, divide into two 
nonempty stacksStrong Induction •	 Scoring: if chosen stack is of size a+b 

Well-order principle and you divide into two stacks of size a 
and b, you get ab points 

•	 Overall score: total sum of scores for 
each move 
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© . 

Why? 

0 → 1, 1 → 2, 2 → 3, …, n-1 → n. 
n

know all of 
P(0), P(1), …, P(n) 

P(n+1 P(n

© . 

Strong Induction 

Allows proving P( all of 
P P P(n), 

instead of just P(n). 
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Ordinary Induction 

Seems unfair, since started at 0, 
then showed 

So by the time we got to +1,already 

Ordinary induction allows proving 
) from  ) only 
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n+1) from  
(0), (1), …, 

Strong Induction 

0 red and 
(if everything ≤ n red then n+1 red ) 

then everything is red. 
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Strong vs. Ordinary 
Induction 

MetaTheorem: Can transform any Strong 
Induction proof into Ordinary Induction. 
Reprove by ordinary induction using 
induction hypothesis:  Q(n) ::= ∀k ≤ n P(k) 

Earlier Strong Induction now goes 
through by Ordinary Induction.

∀m R(m) 

R(0), [∀n [∀ k ≤ n R(k)] →R(n+1)] 
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Strong vs. Ordinary 
Induction 

So why use Strong?


-- Convenience: no need to


include ∀k ≤ n all over.
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Well-ordering 
Principle 
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Well-ordering principle Well-ordering principle 

Every nonempty set of Every nonempty set of 
nonnegative integers rationals nonnegative integers 

has a has a 
least element. least element. 

NO! NO! 
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Problems 

Class Problem 1 
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Well-ordering principle

Every nonempty set of 
nonnegative integers 

has a 
least element. 

Familiar? Now you mention it, Yes.

Obvious? Yes.

Trivial? Yes. But watch out:
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Proof using well-order principle 

Theorem: 2 is irrational.

Proof (by contradiction): 


• Suppose 2 was rational. 
• Choose m, n integers without common   

prime factors (always possible) such that 
2 = 

m 
n 

• Show that m & n are both even, 

a contradiction!
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Well-ordering principle
Theorem: Every integer > 1 is a product 

of primes.


Proof: (by contradiction) Suppose not. 

Then set of nonproducts is nonempty.

By WOP, there is a least n > 1 that is not

a product of primes.

In particular, n is not prime.
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Well-ordering principle Problems 
Theorem: Every integer > 1 is a product 
of primes. 

…So Class Problem 2 
n = k⋅ m = p1 ⋅ p2 ⋅ ⋅ ⋅ p94 ⋅ q1 ⋅ q2 ⋅ ⋅ ⋅ q214 

is a prime product, a contradiction. 
∴ The set of nonproducts > 1 

must be empty. QED 
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Proof using well-order principle 

• Choose m, n integers without common   
prime factors (always possible) 

• WHY IS IT ALWAYS POSSIBLE? 

First: can assume m≥0 
Next:  by WOP, pick minimum m0 such 

that q=m0/n0 for some n0 

If m0 and n0 had common factor p then 
could write q=(m0/p)/(n0/p) 

Contradicts minimality of m0! 
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Well-ordering principle
Theorem: Every integer > 1 is a product 
of primes. 
Proof: …So n = k·m for integers k, m

where n > k,m >1.

Since k,m smaller than the least 

nonproduct, both are prime products, eg.,


k = p1 ⋅ p2 ⋅ ⋅ ⋅ p94 
m = q1 ⋅ q2 ⋅ ⋅ ⋅  q214 
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