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Solutions to In­Class Problems Week 6, Fri. 

Problem 1. This problem gives you practice with modular arithmetic. If you wish to shout 
“Woohoo!”, go ahead— we understand. 

(a) Prove: If a ≡ b (mod n), then ac ≡ bc (mod n). 

Solution. The condition a ≡ b (mod n) is equivalent to the assertion n (a − b). This implies that |
n (a − b)c by part (a) of Problem 1, and so n (ac − bc). This is equivalent to ac ≡ bc (mod n). �| | 

(b) Prove: (a rem n) ≡ a (mod n) 

Solution. The remainder a rem n is equal to a− qn for some integer q. However, for every integer 
q: 

n | qn 
⇒ n (a − qn)− a 
⇒ n |

| 
(a rem n)− a 

The last statement is equivalent to (a rem n) ≡ a (mod n). � 

(c) Sketch an induction proof that 10k ≡ 1 (mod 9) for all k ≥ 0. Why is a number written in 
decimal evenly divisible by 9 if and only if the sum of its digits is a multiple of 9? 

Solution. The claim holds for k = 0, since 100 ≡ 1 (mod 9). Suppose the claim holds for some 
k ≥ 0; that is, 10k ≡ 1 (mod 9). Multiplying both sides by 10 gives 10k+1 ≡ 10 ≡ 1 (mod 9). So 
the claim holds for k + 1 as well. 

A number in decimal has the form: 

dk · 10k + dk−1 10k−1 + . . . + d1 10 + d0· · 

From the observation above, we know: 

dk 10k + dk−1 10k−1 + . . . + d1 10 + d0 dk + dk−1 + . . . + d1 + d0 (mod 9) · · · ≡ 
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This shows something stronger: the remainder when the original number is divided by 9 is equal 
to the remainder when the sum of the digits is divided by 9. In particular, if one is zero, then so is 
the other. � 

Problem 2. Two nonparallel lines in the real plane intersect at a point. Algebraically, this means 
that the equations 

y = m1x + b1 

y = m2x + b2 

have a unique solution (x, y), provided m1 =� m2. This statement would be false if we restricted x 
and y to the integers, since the two lines could cross at a noninteger point: 

However, an analogous statement holds if we work over the integers modulo a prime p. Find a 
solution to the congruences 

y ≡ m1x + b1 (mod p) 
y ≡ m2x + b2 (mod p) 

of the form x ≡? (mod p) and y ≡? (mod p) where the ?’s denote expressions involving m1, m2, 
b1, and b2. You may find it helpful to solve the original equations over the reals first. 

Solution. Subtracting the second congruence from the first, we have: 

0 ≡ m1x + b1 − (m2x + b2) (mod p) 
(m1 − m2)x b2 − b1 (mod p)≡ 

x ≡ (m1 − m2)−1 · (b2 − b1) (mod p) 

Substituting this value of x into the first congruence, we have 

y ≡ m1 · (m1 − m2)−1 · (b2 − b1) + b1 (mod p) 
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Problem 3. Suppose that p is a prime. 

(a) An integer k is self­inverse if k k ≡ 1 (mod p). Find all integers that are self­inverse mod p.·

Solution. The congruence holds if and only if p | k2 − 1 which is equivalent to p (k + 1)(k − 1). 
This holds if and only if either p k + 1 or p k − 1. Thus, k ≡ ±1 (mod p). 

|
�| |

(b) Wilson’s Theorem says that (p−1)! ≡ −1 (mod p). The English mathematician Edward Waring 
said that this statement would probably be extremely difficult to prove because no one had even 
devised an adequate notation for dealing with primes. (Gauss proved it while standing.) Your 
turn! Try cancelling terms of (p − 1)! in pairs. See if you can do it while standing on one leg. 

Solution. If p = 2, then the theorem holds, because 1! ≡ −1 (mod 2). If p > 2, then p− 1 and 1 are 
distinct terms in the product 1 2 · · · · (p − 1), and these are the only self­inverses. Consequently, ·
we can pair each of the remaining terms with its multiplicative inverse. Since the product of a 
number and its inverse is congruent to 1, all of these remaining terms cancel. Therefore, we have: 

(p − 1)! 1 · (p − 1) (mod p)≡ 

≡ −1 (mod p) 
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