
� 

Massachusetts Institute of Technology 
6.042J/18.062J, Fall ’05: Mathematics for Computer Science October 3 
Prof. Albert R. Meyer and Prof. Ronitt Rubinfeld revised October 4, 2005, 1438 minutes 

Solutions to In­Class Problems Week 5, Mon.


Problem 1. There is a party. Some people shake hands an even number of times and some shake 
an odd number of times. Show that an even number of people shake hands an odd number of 
times. 

Solution. We can represent the party by a graph. (Yeah, right.) Each person is represented by a 
vertex. If two people shake hands, then there is an edge between the corresponding vertices. This 
reduces the problem to the following theorem: 

Theorem 1.1. In every graph, there are an even number of vertices of odd degree. 

Proof. Partitioning the vertices into those of even degree and those of odd degree, we know � � � 
d(v) = d(v) + d(v) 

v∈V d(v) is odd d(v) is even 

The value of the lefthand side of this equation is even, and the second summand on the righthand 
side is even since it is entirely a sum of even values. So the first summand on the righthand side 
must also be even. But since it is entirely a sum of odd values, it must must contain an even 
number of terms. That is, there must be an even number of vertices with odd degree. 

Problem 2. Define a halfgraph to be a graph with 2n vertices, all of degree exactly n, for some 
n ≥ 1. Can a halfgraph have more than one connected component? If so, draw an example. If not, 
explain why. 

Solution. No. If the graph has two or more connected components, then some connected compo­
nent must have n or fewer vertices. (Otherwise, there would be more than 2n vertices in all.) Each 
vertex in this component can have degree at most n − 1. � 
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Problem 3. A set, M , of vertices of a graph is a maximal connected set if every pair of vertices in the 
set are connected, and any set of vertices properly containing M will contain two vertices that are 
not connected. 

(a) What are the maximal connected subsets of the following (unconnected) graph? 

Solution. There are three maximal subsets, each one equal to the vertices of one of the connected 
components of the graph. � 

(b) Explain the connection between maximal connected sets and connected components. 

Solution. They are the same. � 

(c) Prove it. 

Solution. We first show that a connected component is a maximal set. A connected component 
consists of all the vertices connected to some vertex v. A larger set of vertices would, by definition, 
contain both v and a vertex, w, that is not in the connected component. This means that w is 
not connected to v, and therefore the larger set is not connected. So a connected component is 
maximal. 

Conversely, suppose we have a maximal connected set, M . Since M connected, any vertex, v, in M 
is connected to all the other vertices in M . If there was any vertex, w, connected to v, that was not 
in M , then M ∪{w} would be connected and properly contain M , contradicting the maximality of 
M . So M consists of exactly the vertices connected to v, proving that it is a connected component. 

Problem 4. (a) Describe a connected graph such that every vertex is on a simple cycle, but the 
graph is not 2­connected. 

Solution. Two cycles connected by an edge. � 
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(b) Prove that a graph is 2­connected iff it is connected and every edge is traversed by a simple 
cycle. 

Solution. To prove the iff from left to right, we assume some edge, v—w, is not traversed by any

simple cycle and then show that the graph is not 2­connected.


Now if there was a simple path between v and w that did not traverse this edge, then this path

together with the edge, would be a simple cycle that traversed the edge. So every simple path from

w to v must traverse this edge. So if this edge is removed, no simple path will connect v and w,

which implies that no path whatsoever connects them. This proves the graph is not 2­connected.


Conversely, suppose the graph is connected but not 2­connected. We will show that edge is not

on a simple cycle.


Since the graph is connected but not 2­connected, there must be a “cut’ edge v—w whose removal

leaves a disconnected graph. Now if there was a simple cycle that traversed this edge, then the

cycle minus this edge would be a simple path, P , between v and w that did not traverse the

edge. So any path connecting two points that traversed this edge could be replaced by a path

containing P in place of the edge. Therefore, all edges that were connected before the edge was

removed would still be connected after it is removed. So since the original graph was connected,

it remains connected after the edge is removed. This would imply the graph was 2­connected, a

contradiction. So there cannot be a simple cycle that traverses a cut edge. �


Problem 5. How many spanning trees does the following graph have?


Solution. There are a lot of possible spanning trees: David wrote a computer program to solve 
the problem and found a total of 115 spanning trees. 

So we didn’t expect any teams to completely solve this problem. However, we did expect teams 
to start generating spanning trees and also to consider how to determine when they had them all. 

There are efficient algorithms for counting spanning trees in arbitrary graphs, but they typically 
involve complex procedures like computing matrix determinants, which is tricky to do efficiently. 
For this particular problem, a more straighforward approach is to use a combination of brute force 
and case analysis, which is feasible, if tedious, to work out by hand. � 
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