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Solutions to In­Class Problems Week 3, Fri.


Problem 1. Given an unlimited supply of 3 cent and 5 cent stamps, what postages are possible? 
Prove it using Strong Induction. Hint: Try some examples! Which postage values between 1 and 
25 cents can you construct from 3 cent and 5 cent stamps? 

Solution. Let’s use our examples to first try to guess the answer and then try to prove it. Let’s 
begin filling in a table that shows the values of all possible combinations of 3 and 5 cent stamps. 
The column heading is the number of 5 cent stamps and the row heading is the number of 3 cent 
stamps. 

0 1 2 3 4 5 . . . 

0 0 5 10 15 20 25 . . . 
1 3 8 13 18 23 . . . 
2 6 11 16 21 . . . 
3 9 14 19 24 . . . 
4 12 17 22 . . . 
5 15 20 . . . 

. . . . . . . . . 

Looking at the table, a reasonable guess is that the possible postages are 0, 3, 5, and 6 cents and 
every value of 8 or more cents. Let’s try to prove this last part using strong induction. 

Claim 1.1. For all n ≥ 8, it is possible to produce n cents of postage from 3¢ and 5¢ stamps. 

Now let’s preview the proof. The induction hypothesis will be 

P (n) ::= if n ≥ 8, then n¢ postage can be produced using 3¢ and 5¢ stamps (1) 

A proof by strong induction will have the same five­part structure as an ordinary induction proof. 
The base case, P (0), won’t be interesting because P (n) is vacuously true for all n < 8. 

In the inductive step we have to show how to produce n+1 cents of postage, assuming the strong 
induction hypothesis that we know how to produce k¢ of postage for all values of k between 8 
and n. A simple way to do this is to let k = n− 2 and produce k¢ of postage; then add a 3¢ stamp 
to get n + 1 cents. 

But we have to be careful; there is a pitfall in this method. If n + 1 is 8, 9 or 10, then we can not 
use the trick of creating n + 1 cents of postage from n− 2 cents and a 3 cent stamp. In these cases, 
n− 2 is less than 8. None of the strong induction assumptions help us make less than 8¢ postage. 
Fortunately, making n + 1 cents of postage in these three cases can be easily done directly. 
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Proof. The proof is by strong induction. The induction hypothesis, P (n), is given by (1).


Base case: n = 0: P (0) is true vacuously.


Inductive step: In the inductive step, we assume that it is possible to produce postage worth

8, 9, . . . , n cents in order to prove that it is possible to produce postage worth n + 1 cents. 

There are four cases: 

1.	 n + 1 < 8: So P (n + 1) holds vacuously. 

2.	 n + 1 = 8: P (n + 1) holds because we produce 8¢ postage using one 3¢ and one 5¢ stamp. 

3.	 n + 1 = 9: P (n + 1) holds by using three 3¢ stamps. 

4.	 n + 1 = 10: P (n + 1) holds by using two 5¢ stamps. 

5.	 n + 1 > 10: We have n ≥ 10, so n − 2 ≥ 8 and by strong induction we may assume we 
can produce exactly n − 2 cents of postage. With an additional 3¢ stamp we can therefore 
produce n + 1 cents of postage. 

So in every case, P (0) ∧ P (1) ∧ . . . P ( n + 1). By strong induction, we have concluded n) −→ P (
that P (n) is true for all n ∈ N. 

Problem 2. Use the Well­ordering Principle to prove that there is no solution over the positive 
integers to the equation: 

34a 3 + 2b3 = c . 

Solution. We use contradiction and the well­ordering principle. Let S be the set of all positive 
integers, a, such that there exist positive integers, b, and, c, that satisfy the equation. 

Assume for the purpose of obtaining a contradiction that S is nonempty. Then S contains a small­
est element, a0, by the well­ordering principle. By the definition of S, there exist corresponding 
positive integers, b0, and, c0, such that: 

3 34a0 + 2b3 = c00 

3The left side of this equation is even, so c0 is even, and therefore c0 is also even. Thus, there exists 
an integer, c1, such that c0 = 2c1. Substituting into the preceding equation and then dividing both 
sides by 2 gives: 

3 32a0 + b3 = 4c10 

Now b3 
0 must be even, so b0 is even. Thus, there exists an integer, b1, such that b0 = 2b1. Substitut­

ing into the preceding equation and dividing both sides by 2 again gives: 

3 3 a0 + 4b3 = 2c11 
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3From this equation, we know that a0 is even, so a0 is also even. Thus, there exists an integer, a1, 
such that a0 = 2a1. Substituting into the previous equation one last time and dividing by 2 one 
last time gives: 

3 34a1 + 2b3 = c11 

Evidently, a = a1, b = b1, and c = c1 is another solution to the original equation, and so a1 is an 
element of S. But this is a contradiction, because a1 < a0 and a0 was defined to be the smallest 
element of S. Therefore, our assumption was wrong, and the original equation has no solutions 
over the positive integers. 

This argument is quite similar to the proof that 
√

2 is irrational. In fact, looking back, we implicitly 
relied on the Well­ordering Principle in that proof when we claimed that a rational number could 
be written as a fraction in lowest terms. We’ve been using the Well­ordering Principle on the sly 
from early on! � 
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