Solutions to In-Class Problems Week 15, Mon.

Problem 1. The Pairwise Independent Sampling Theorem generalizes easily to sequences of pairwise independent random variables, possibly with *different* means and variances, as long as their variances are bounded by some constant:

Theorem (Generalized Pairwise Independent Sampling). Let $X_1, X_2, ...$ be a sequence of pairwise independent random variables such that $\text{Var}[X_i] \leq b$ for some $b \geq 0$ and all $i \geq 1$. Let

$$A_n ::= \frac{X_1 + X_2 + \dots + X_n}{n},$$

$$\mu_n ::= \operatorname{E}[S_n].$$

Then for every $\epsilon > 0$,

$$\Pr\{|A_n - \mu_n| > \epsilon\} \le \frac{b}{\epsilon^2} \cdot \frac{1}{n}.\tag{1}$$

(a) Prove the Generalized Pairwise Independent Sampling Theorem. *Hint:* The proof of the Pairwise Independent Sampling Theorem from the Notes is repeated in the Appendix.

Solution. Essentially identical to the proof attached, except that $Var[G_i]$ gets replaced by b, and the equality becomes \leq where the b is first used.

(b) Conclude

Corollary (Generalized Weak Law of Large Numbers). For every $\epsilon > 0$,

$$\lim_{n \to \infty} \Pr\left\{ |A_n - \mu_n| > \epsilon \right\} = 0.$$

Solution. For any fixed ϵ , the righthand side of (1) approaches 0 as n approaches infinity.

Problem 2. Write out a proof that

$$\operatorname{Var}\left[aR\right] = a^2 \operatorname{Var}\left[R\right].$$

Problem 3. Finish discussing the "Explain sampling to a jury question" from last Friday.

1 Appendix

1.1 Chebyshev's Theorem

Theorem (Chebyshev). Let R be a random variable, and let x be a positive real number. Then

$$\Pr\left\{|R - \operatorname{E}[R]| \ge x\right\} \le \frac{\operatorname{Var}[R]}{x^2}.\tag{2}$$

1.2 Pairwise Independent Sampling

Theorem (Pairwise Independent Linearity of Variance). *If* R_1, R_2, \ldots, R_n *are* pairwise *independent random variables, then*

$$Var[R_1 + R_2 + \cdots + R_n] = Var[R_1] + Var[R_2] + \cdots + Var[R_n].$$

Theorem (Pairwise Independent Sampling). Let

$$A_n ::= \frac{\sum_{i=1}^n G_i}{n}$$

where G_1, \ldots, G_n are pairwise independent random variables with the same mean, μ , and deviation, σ . Then

$$\Pr\{|A_n - \mu| > x\} \le \left(\frac{\sigma}{x}\right)^2 \cdot \frac{1}{n}.\tag{3}$$

Proof. By linearity of expectation,

$$E[A_n] = \frac{E[\sum_{i=1}^n G_i]}{n} = \frac{\sum_{i=1}^n E[G_i]}{n} = \frac{n\mu}{n} = \mu.$$

Since the G_i 's are pairwise independent, their variances will also add, so

$$\operatorname{Var}\left[A_{n}\right] = \left(\frac{1}{n}\right)^{2} \operatorname{Var}\left[\sum_{i=1}^{n} G_{i}\right] \qquad \qquad (\operatorname{Var}\left[aR\right] = a^{2} \operatorname{Var}\left[R\right])$$

$$= \left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{Var}\left[G_{i}\right] \qquad \qquad (\operatorname{linearity of variance})$$

$$= \left(\frac{1}{n}\right)^{2} n \sigma^{2}$$

$$= \frac{\sigma^{2}}{n}.$$

Now letting R be A_n in Chebyshev's Bound (2) yields (3), as required.